lisa-on-cuda / chat.py
x-lai
support 4bit and 8bit inference
968fffb
raw
history blame
6.59 kB
import sys
import os
import cv2
import argparse
import torch
import transformers
import numpy as np
import torch.nn.functional as F
from transformers import AutoTokenizer, CLIPImageProcessor
from model.LISA import LISA
from utils.conversation import get_default_conv_template
from model.segment_anything.utils.transforms import ResizeLongestSide
def parse_args(args):
parser = argparse.ArgumentParser(description='LISA chat')
parser.add_argument('--version', default='xinlai/LISA-13B-llama2-v0')
parser.add_argument('--vis_save_path', default='./vis_output', type=str)
parser.add_argument('--precision', default='bf16', type=str, choices=['fp32', 'bf16', 'fp16'], help="precision for inference")
parser.add_argument('--image-size', default=1024, type=int, help='image size')
parser.add_argument('--model-max-length', default=512, type=int)
parser.add_argument('--lora-r', default=-1, type=int)
parser.add_argument('--vision-tower', default='openai/clip-vit-large-patch14', type=str)
parser.add_argument('--local-rank', default=0, type=int, help='node rank')
parser.add_argument('--load_in_8bit', action='store_true', default=False)
parser.add_argument('--load_in_4bit', action='store_true', default=False)
return parser.parse_args(args)
def preprocess(x,
pixel_mean=torch.Tensor([123.675, 116.28, 103.53]).view(-1, 1, 1),
pixel_std=torch.Tensor([58.395, 57.12, 57.375]).view(-1, 1, 1),
img_size=1024
) -> torch.Tensor:
"""Normalize pixel values and pad to a square input."""
# Normalize colors
x = (x - pixel_mean) / pixel_std
# Pad
h, w = x.shape[-2:]
padh = img_size - h
padw = img_size - w
x = F.pad(x, (0, padw, 0, padh))
return x
def main(args):
args = parse_args(args)
os.makedirs(args.vis_save_path, exist_ok=True)
# Create model
tokenizer = transformers.AutoTokenizer.from_pretrained(
args.version,
cache_dir=None,
model_max_length=args.model_max_length,
padding_side="right",
use_fast=False,
)
tokenizer.pad_token = tokenizer.unk_token
num_added_tokens = tokenizer.add_tokens('[SEG]')
ret_token_idx = tokenizer('[SEG]', add_special_tokens=False).input_ids
args.seg_token_idx = ret_token_idx[0]
model = LISA(
args.local_rank,
args.seg_token_idx,
tokenizer,
args.version,
args.lora_r,
args.precision,
load_in_8bit=args.load_in_8bit,
load_in_4bit=args.load_in_4bit,
)
weight = {}
visual_model_weight = torch.load(os.path.join(args.version, "pytorch_model-visual_model.bin"))
text_hidden_fcs_weight = torch.load(os.path.join(args.version, "pytorch_model-text_hidden_fcs.bin"))
weight.update(visual_model_weight)
weight.update(text_hidden_fcs_weight)
missing_keys, unexpected_keys = model.load_state_dict(weight, strict=False)
if args.precision == 'bf16':
model = model.bfloat16().cuda()
elif args.precision == 'fp16':
import deepspeed
model_engine = deepspeed.init_inference(model=model,
dtype=torch.half,
replace_with_kernel_inject=True,
replace_method="auto",
)
model = model_engine.module
else:
model = model.float().cuda()
DEFAULT_IMAGE_TOKEN = "<image>"
DEFAULT_IMAGE_PATCH_TOKEN = "<im_patch>"
DEFAULT_IM_START_TOKEN = "<im_start>"
DEFAULT_IM_END_TOKEN = "<im_end>"
image_token_len = 256
clip_image_processor = CLIPImageProcessor.from_pretrained(args.vision_tower)
transform = ResizeLongestSide(args.image_size)
while True:
conv = get_default_conv_template("vicuna").copy()
conv.messages = []
prompt = input("Please input your prompt: ")
prompt = DEFAULT_IMAGE_TOKEN + " " + prompt
replace_token = DEFAULT_IMAGE_PATCH_TOKEN * image_token_len
replace_token = DEFAULT_IM_START_TOKEN + replace_token + DEFAULT_IM_END_TOKEN
prompt = prompt.replace(DEFAULT_IMAGE_TOKEN, replace_token)
conv.append_message(conv.roles[0], prompt)
conv.append_message(conv.roles[1], "")
prompt = conv.get_prompt()
image_path = input("Please input the image path: ")
if not os.path.exists(image_path):
print("File not found in {}".format(image_path))
continue
image = cv2.imread(image_path)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
original_size_list = [image.shape[:2]]
if args.precision == 'bf16':
images_clip = clip_image_processor.preprocess(image, return_tensors='pt')['pixel_values'][0].unsqueeze(0).cuda().bfloat16()
elif args.precision == 'fp16':
images_clip = clip_image_processor.preprocess(image, return_tensors='pt')['pixel_values'][0].unsqueeze(0).cuda().half()
else:
images_clip = clip_image_processor.preprocess(image, return_tensors='pt')['pixel_values'][0].unsqueeze(0).cuda().float()
images = transform.apply_image(image)
resize_list = [images.shape[:2]]
if args.precision == 'bf16':
images = preprocess(torch.from_numpy(images).permute(2,0,1).contiguous()).unsqueeze(0).cuda().bfloat16()
elif args.precision == 'fp16':
images = preprocess(torch.from_numpy(images).permute(2,0,1).contiguous()).unsqueeze(0).cuda().half()
else:
images = preprocess(torch.from_numpy(images).permute(2,0,1).contiguous()).unsqueeze(0).cuda().float()
input_ids = tokenizer(prompt).input_ids
input_ids = torch.LongTensor(input_ids).unsqueeze(0).cuda()
output_ids, pred_masks = model.evaluate(images_clip, images, input_ids, resize_list, original_size_list, max_new_tokens=512, tokenizer=tokenizer)
text_output = tokenizer.decode(output_ids[0], skip_special_tokens=False)
text_output = text_output.replace(DEFAULT_IMAGE_PATCH_TOKEN, "").replace("\n", "").replace(" ", "")
print("text_output: ", text_output)
for i, pred_mask in enumerate(pred_masks):
if pred_mask.shape[0] == 0:
continue
pred_mask = pred_mask.detach().cpu().numpy()[0]
pred_mask = (pred_mask > 0)
save_path = "{}/{}_mask_{}.jpg".format(args.vis_save_path, image_path.split("/")[-1].split(".")[0], i)
cv2.imwrite(save_path, pred_mask * 100)
print("{} has been saved.".format(save_path))
save_path = "{}/{}_masked_img_{}.jpg".format(args.vis_save_path, image_path.split("/")[-1].split(".")[0], i)
save_img = image.copy()
save_img[pred_mask] = (image * 0.5 + pred_mask[:,:,None].astype(np.uint8) * np.array([255,0,0]) * 0.5)[pred_mask]
save_img = cv2.cvtColor(save_img, cv2.COLOR_RGB2BGR)
cv2.imwrite(save_path, save_img)
print("{} has been saved.".format(save_path))
if __name__ == '__main__':
main(sys.argv[1:])