ai-pronunciation-trainer / tests /lambdas /test_lambdaSpeechToScore.py
alessandro trinca tornidor
test: update test cases for lambdaSpeechToScore.get_speech_to_score_tuple because of a new variable in the return tuple
333afb5
raw
history blame
11.8 kB
import json
import os
import platform
import unittest
from aip_trainer import app_logger
from aip_trainer.lambdas import lambdaSpeechToScore
from tests import EVENTS_FOLDER
text_dict = {"de": "Ich bin Alex, wer bist du?", "en": "Hi there, how are you?"}
expected_output = {
"de": {
"real_transcript": text_dict["de"],
"ipa_transcript": "\u026a\u00e7 bi\u02d0n a\u02d0l\u025bksv\u025b\u02d0 b\u025bst\u025b\u02d0 du\u02d0",
"pronunciation_accuracy": 63.0,
"real_transcripts": text_dict["de"],
"matched_transcripts": "ich bin alexwe - beste du",
"real_transcripts_ipa": "\u026a\u00e7 bi\u02d0n a\u02d0l\u025bks, v\u0250 b\u026ast du\u02d0?",
"matched_transcripts_ipa": "\u026a\u00e7 bi\u02d0n a\u02d0l\u025bksv\u0259 - b\u0259st\u0259 du\u02d0",
"pair_accuracy_category": "0 0 2 2 2 0",
"start_time": "0.0 0.3075 0.62525 2.1346875 1.5785625 2.1346875",
"end_time": "0.328 0.6458125 1.44025 2.4730625 2.15525 2.4730625",
"is_letter_correct_all_words": "111 111 11111 000 1011 111 ",
},
"en": {
"real_transcript": text_dict["en"],
"ipa_transcript": "ha\u026a ha\u028a \u0259r ju",
"pronunciation_accuracy": 69.0,
"real_transcripts": text_dict["en"],
"matched_transcripts": "hi - how are you",
"real_transcripts_ipa": "ha\u026a \u00f0\u025br, ha\u028a \u0259r ju?",
"matched_transcripts_ipa": "ha\u026a ha\u028a \u0259r ju",
"pair_accuracy_category": "0 2 0 0 0",
"start_time": "0.2245625 1.3228125 0.852125 1.04825 1.3228125",
"end_time": "0.559875 1.658125 1.14825 1.344375 1.658125",
"is_letter_correct_all_words": "11 000001 111 111 1111 ",
},
}
def assert_raises_get_speech_to_score_dict(self, real_text, file_bytes_or_audiotmpfile, language, exc, error_message):
from aip_trainer.lambdas import lambdaSpeechToScore
with self.assertRaises(exc):
try:
lambdaSpeechToScore.get_speech_to_score_dict(
real_text, file_bytes_or_audiotmpfile, language, remove_random_file=False
)
except exc as e:
self.assertEqual(str(e), error_message)
raise e
def check_value_by_field(value, match):
import re
assert len(value.strip()) > 0
for word in value.lstrip().rstrip().split(" "):
word_check = re.findall(match, word.strip())
assert len(word_check) == 1
assert word_check[0] == word.strip()
def check_output_by_field(output, key, match, expected_output):
check_value_by_field(output[key], match)
output[key] = expected_output[key]
return output
def check_output(self, output, expected_output, check_audio_files=False):
from pathlib import Path
self.maxDiff = None
try:
assert len(output["matched_transcripts"].strip()) > 0
assert len(output["matched_transcripts_ipa"].strip()) > 0
assert len(output["ipa_transcript"].strip()) > 0
assert len(output["real_transcripts_ipa"].strip()) > 0
output = check_output_by_field(
output, "is_letter_correct_all_words", "[01]+", expected_output
)
output = check_output_by_field(output, "end_time", "\d+\.\d+", expected_output)
output = check_output_by_field(
output, "start_time", "\d+\.\d+", expected_output
)
pronunciation_accuracy = output["pronunciation_accuracy"]
assert isinstance(pronunciation_accuracy, float)
assert pronunciation_accuracy <= 100
output["matched_transcripts"] = expected_output["matched_transcripts"]
output["matched_transcripts_ipa"] = expected_output["matched_transcripts_ipa"]
output["pronunciation_accuracy"] = expected_output["pronunciation_accuracy"]
output["pair_accuracy_category"] = expected_output["pair_accuracy_category"]
output["ipa_transcript"] = expected_output["ipa_transcript"]
output["real_transcript"] = expected_output["real_transcript"]
output["real_transcripts_ipa"] = expected_output["real_transcripts_ipa"]
if check_audio_files:
audio_files = output["audio_files"]
for audio_file in audio_files:
path_audio_file = Path(audio_file)
app_logger.info(f"path_audio_file:{path_audio_file}.")
assert path_audio_file.is_file()
path_audio_file.unlink()
output["audio_files"] = [*audio_files]
expected_output["audio_files"] = [*audio_files]
app_logger.info(f"output audio_files:{output['audio_files']}.")
app_logger.info(f"expected_output audio_files:{expected_output['audio_files']}.")
self.assertDictEqual(output, expected_output)
except Exception as e:
app_logger.error(f"e:{e}.")
raise e
class TestGetAccuracyFromRecordedAudio(unittest.TestCase):
def setUp(self):
if platform.system() == "Windows" or platform.system() == "Win32":
os.environ["PYTHONUTF8"] = "1"
def tearDown(self):
if (
platform.system() == "Windows" or platform.system() == "Win32"
) and "PYTHONUTF8" in os.environ:
del os.environ["PYTHONUTF8"]
def test_GetAccuracyFromRecordedAudio(self):
with open(EVENTS_FOLDER / "GetAccuracyFromRecordedAudio.json", "r") as src:
inputs_outputs = json.load(src)
inputs = inputs_outputs["inputs"]
outputs = inputs_outputs["outputs"]
for event_name, event_content in inputs.items():
current_expected_output = outputs[event_name]
output = lambdaSpeechToScore.lambda_handler(event_content, [])
output = json.loads(output)
app_logger.info(
f"output type:{type(output)}, expected_output type:{type(current_expected_output)}."
)
check_output(self, output, current_expected_output)
def test_get_speech_to_score_en_ok(self):
from aip_trainer.lambdas import lambdaSpeechToScore
language = "en"
path = EVENTS_FOLDER / f"test_{language}.wav"
output = lambdaSpeechToScore.get_speech_to_score_dict(
real_text=text_dict[language],
file_bytes_or_audiotmpfile=str(path),
language=language,
remove_random_file=False,
)
check_output(self, output, expected_output[language])
def test_get_speech_to_score_en_ok_remove_input_file(self):
import shutil
from aip_trainer.lambdas import lambdaSpeechToScore
language = "en"
path = EVENTS_FOLDER / f"test_{language}.wav"
path2 = EVENTS_FOLDER / f"test2_{language}.wav"
shutil.copy(path, path2)
assert path2.exists() and path2.is_file()
output = lambdaSpeechToScore.get_speech_to_score_dict(
real_text=text_dict[language],
file_bytes_or_audiotmpfile=str(path2),
language=language,
remove_random_file=True,
)
assert not path2.exists()
check_output(self, output, expected_output[language])
def test_get_speech_to_score_de_ok(self):
from aip_trainer.lambdas import lambdaSpeechToScore
language = "de"
path = EVENTS_FOLDER / f"test_{language}.wav"
output = lambdaSpeechToScore.get_speech_to_score_dict(
real_text=text_dict[language],
file_bytes_or_audiotmpfile=str(path),
language=language,
remove_random_file=False,
)
check_output(self, output, expected_output[language])
def test_get_speech_to_score_de_ok_remove_input_file(self):
import shutil
from aip_trainer.lambdas import lambdaSpeechToScore
language = "de"
path = EVENTS_FOLDER / f"test_{language}.wav"
path2 = EVENTS_FOLDER / f"test2_{language}.wav"
shutil.copy(path, path2)
assert path2.exists() and path2.is_file()
output = lambdaSpeechToScore.get_speech_to_score_dict(
real_text=text_dict[language],
file_bytes_or_audiotmpfile=str(path2),
language=language,
remove_random_file=True,
)
assert not path2.exists()
check_output(self, output, expected_output[language])
def test_get_speech_to_score_tuple_de_ok(self):
from aip_trainer.lambdas import lambdaSpeechToScore
language = "de"
path = EVENTS_FOLDER / f"test_{language}.wav"
(
real_transcripts,
is_letter_correct_all_words,
pronunciation_accuracy,
ipa_transcript,
real_transcripts_ipa,
num_words,
dumped,
) = lambdaSpeechToScore.get_speech_to_score_tuple(
real_text=text_dict[language],
file_bytes_or_audiotmpfile=str(path),
language=language,
remove_random_file=False,
)
assert real_transcripts == text_dict[language]
check_value_by_field(is_letter_correct_all_words, "[01]+")
assert isinstance(pronunciation_accuracy, float)
assert pronunciation_accuracy <= 100
assert len(ipa_transcript.strip()) > 0
assert len(real_transcripts_ipa.strip()) > 0
assert num_words == 6
check_output(self, json.loads(dumped), expected_output[language], check_audio_files=True)
def test_get_speech_to_score_tuple_en_ok(self):
from aip_trainer.lambdas import lambdaSpeechToScore
language = "en"
path = EVENTS_FOLDER / f"test_{language}.wav"
(
real_transcripts,
is_letter_correct_all_words,
pronunciation_accuracy,
ipa_transcript,
real_transcripts_ipa,
num_words,
dumped,
) = lambdaSpeechToScore.get_speech_to_score_tuple(
real_text=text_dict[language],
file_bytes_or_audiotmpfile=str(path),
language=language,
remove_random_file=False,
)
assert real_transcripts == text_dict[language]
check_value_by_field(is_letter_correct_all_words, "[01]+")
assert isinstance(pronunciation_accuracy, float)
assert pronunciation_accuracy <= 100
assert len(ipa_transcript.strip()) > 0
assert len(real_transcripts_ipa.strip()) > 0
assert num_words == 5
check_output(self, json.loads(dumped), expected_output[language], check_audio_files=True)
def test_get_speech_to_score_dict__de_empty_input_text(self):
language = "de"
path = EVENTS_FOLDER / f"test_{language}.wav"
assert_raises_get_speech_to_score_dict(self, "", str(path), language, ValueError, "cannot read an empty/None text: ''...")
def test_get_speech_to_score_dict__en_empty_input_text(self):
language = "en"
path = EVENTS_FOLDER / f"test_{language}.wav"
assert_raises_get_speech_to_score_dict(self, "", str(path), language, ValueError, "cannot read an empty/None text: ''...")
def test_get_speech_to_score_dict__de_empty_input_file(self):
language = "de"
assert_raises_get_speech_to_score_dict(self, "text fake", "", language, ValueError, "cannot read an empty/None file: ''...")
def test_get_speech_to_score_dict__en_empty_input_file(self):
language = "en"
assert_raises_get_speech_to_score_dict(self, "text fake", "", language, ValueError, "cannot read an empty/None file: ''...")
def test_get_speech_to_score_dict__empty_language(self):
assert_raises_get_speech_to_score_dict(self, "text fake", "fake_file", "", NotImplementedError, "Not tested/supported with '' language...")
if __name__ == "__main__":
unittest.main()