Spaces:
Running
Running
alessandro trinca tornidor
ci: hugginface space, move from docker to gradio sdk v5.6.0, add missing packages.txt with ffmpeg, pre-requirements.txt with pip, update gradio app to properly format informations to frontend, update tests
9ab32d7
import gradio as gr | |
from aip_trainer import app_logger | |
from aip_trainer.lambdas import lambdaSpeechToScore | |
js = """ | |
function updateCssText(text, letters) { | |
let wordsArr = text.split(" ") | |
let lettersWordsArr = letters.split(" ") | |
let speechOutputContainer = document.querySelector('#speech-output'); | |
speechOutputContainer.textContent = "" | |
for (let idx in wordsArr) { | |
let word = wordsArr[idx] | |
let letterIsCorrect = lettersWordsArr[idx] | |
for (let idx1 in word) { | |
let letterCorrect = letterIsCorrect[idx1] == "1" | |
let containerLetter = document.createElement("span") | |
containerLetter.style.color = letterCorrect ? 'green' : "red" | |
containerLetter.innerText = word[idx1]; | |
speechOutputContainer.appendChild(containerLetter) | |
} | |
let containerSpace = document.createElement("span") | |
containerSpace.textContent = " " | |
speechOutputContainer.appendChild(containerSpace) | |
} | |
} | |
""" | |
with gr.Blocks() as gradio_app: | |
app_logger.info("start gradio app building...") | |
gr.Markdown( | |
""" | |
# AI Pronunciation Trainer | |
See [my fork](https://github.com/trincadev/ai-pronunciation-trainer) of [AI Pronunciation Trainer](https://github.com/Thiagohgl/ai-pronunciation-trainer) repositroy | |
for more details. | |
""" | |
) | |
with gr.Row(): | |
with gr.Column(scale=4, min_width=300): | |
with gr.Row(): | |
with gr.Column(scale=1, min_width=50): | |
language = gr.Radio(["de", "en"], label="Language", value="en") | |
with gr.Column(scale=7, min_width=300): | |
learner_transcription = gr.Textbox( | |
lines=3, | |
label="Learner Transcription", | |
value="Hi there, how are you?", | |
) | |
with gr.Row(): | |
learner_recording = gr.Audio( | |
label="Learner Recording", | |
sources=["microphone", "upload"], | |
type="filepath", | |
) | |
with gr.Column(scale=3, min_width=300): | |
transcripted_text = gr.Textbox( | |
lines=2, placeholder=None, label="Transcripted text", visible=False | |
) | |
letter_correctness = gr.Textbox( | |
lines=1, | |
placeholder=None, | |
label="Letters correctness", | |
visible=False, | |
) | |
pronunciation_accuracy = gr.Textbox( | |
lines=1, placeholder=None, label="Pronunciation accuracy %" | |
) | |
recording_ipa = gr.Textbox( | |
lines=1, placeholder=None, label="Learner phonetic transcription" | |
) | |
ideal_ipa = gr.Textbox( | |
lines=1, placeholder=None, label="Ideal phonetic transcription" | |
) | |
res = gr.Textbox(lines=1, placeholder=None, label="RES", visible=False) | |
html_output = gr.HTML( | |
label="Speech accuracy output", | |
elem_id="speech-output", | |
show_label=True, | |
visible=True, | |
render=True, | |
value=" - ", | |
elem_classes="speech-output", | |
) | |
btn = gr.Button(value="Recognize speech accuracy") | |
# real_transcripts, is_letter_correct_all_words, pronunciation_accuracy, result['recording_ipa'], real_transcripts_ipa, res | |
btn.click( | |
lambdaSpeechToScore.get_speech_to_score_tuple, | |
inputs=[learner_transcription, learner_recording, language], | |
outputs=[ | |
transcripted_text, | |
letter_correctness, | |
pronunciation_accuracy, | |
recording_ipa, | |
ideal_ipa, | |
res, | |
], | |
) | |
html_output.change( | |
None, | |
inputs=[transcripted_text, letter_correctness], | |
outputs=[html_output], | |
js=js, | |
) | |
if __name__ == "__main__": | |
gradio_app.launch() |