alessandro trinca tornidor
feat: refactor get_resulting_string to reduce its complexity, improve some return typing
0746ae5
raw
history blame
7.8 kB
import time
from string import punctuation
import numpy as np
from dtwalign import dtw_from_distance_matrix
from ortools.sat.python import cp_model
from . import WordMetrics, app_logger
offset_blank = 1
TIME_THRESHOLD_MAPPING = 5.0
def get_word_distance_matrix(words_estimated: list, words_real: list) -> np.array:
number_of_real_words = len(words_real)
number_of_estimated_words = len(words_estimated)
word_distance_matrix = np.zeros(
(number_of_estimated_words+offset_blank, number_of_real_words))
for idx_estimated in range(number_of_estimated_words):
for idx_real in range(number_of_real_words):
word_distance_matrix[idx_estimated, idx_real] = WordMetrics.edit_distance_python(
words_estimated[idx_estimated], words_real[idx_real])
if offset_blank == 1:
for idx_real in range(number_of_real_words):
word_distance_matrix[number_of_estimated_words,
idx_real] = len(words_real[idx_real])
return word_distance_matrix
def get_best_path_from_distance_matrix(word_distance_matrix):
modelCpp = cp_model.CpModel()
number_of_real_words = word_distance_matrix.shape[1]
number_of_estimated_words = word_distance_matrix.shape[0]-1
number_words = np.maximum(number_of_real_words, number_of_estimated_words)
estimated_words_order = [modelCpp.NewIntVar(0, int(
number_words - 1 + offset_blank), 'w%i' % i) for i in range(number_words+offset_blank)]
# They are in ascending order
for word_idx in range(number_words-1):
modelCpp.Add(
estimated_words_order[word_idx+1] >= estimated_words_order[word_idx])
total_phoneme_distance = 0
real_word_at_time = {}
for idx_estimated in range(number_of_estimated_words):
for idx_real in range(number_of_real_words):
real_word_at_time[idx_estimated, idx_real] = modelCpp.NewBoolVar(
'real_word_at_time'+str(idx_real)+'-'+str(idx_estimated))
modelCpp.Add(estimated_words_order[idx_estimated] == idx_real).OnlyEnforceIf(
real_word_at_time[idx_estimated, idx_real])
total_phoneme_distance += word_distance_matrix[idx_estimated,
idx_real]*real_word_at_time[idx_estimated, idx_real]
# If no word in time, difference is calculated from empty string
for idx_real in range(number_of_real_words):
word_has_a_match = modelCpp.NewBoolVar(
'word_has_a_match'+str(idx_real))
modelCpp.Add(sum([real_word_at_time[idx_estimated, idx_real] for idx_estimated in range(
number_of_estimated_words)]) == 1).OnlyEnforceIf(word_has_a_match)
total_phoneme_distance += word_distance_matrix[number_of_estimated_words,
idx_real]*word_has_a_match.Not()
# Loss should be minimized
modelCpp.Minimize(total_phoneme_distance)
solver = cp_model.CpSolver()
solver.parameters.max_time_in_seconds = TIME_THRESHOLD_MAPPING
status = solver.Solve(modelCpp)
mapped_indices = []
try:
for word_idx in range(number_words):
mapped_indices.append(
(solver.Value(estimated_words_order[word_idx])))
return np.array(mapped_indices, dtype=int)
except Exception as ex:
app_logger.error(f"ex:{ex}.")
return []
def get_resulting_string(mapped_indices: np.array, words_estimated: list, words_real: list) -> tuple[list, list]:
mapped_words = []
mapped_words_indices = []
WORD_NOT_FOUND_TOKEN = '-'
number_of_real_words = len(words_real)
for word_idx in range(number_of_real_words):
app_logger.debug(f"{word_idx} => {mapped_indices} == {word_idx}, {mapped_indices == word_idx} #")
position_of_real_word_indices = np.where(
mapped_indices == word_idx)[0].astype(int)
if len(position_of_real_word_indices) == 0:
mapped_words.append(WORD_NOT_FOUND_TOKEN)
mapped_words_indices.append(-1)
continue
if len(position_of_real_word_indices) == 1:
mapped_words.append(
words_estimated[position_of_real_word_indices[0]])
mapped_words_indices.append(position_of_real_word_indices[0])
continue
# Check which index gives the lowest error
if len(position_of_real_word_indices) > 1:
error = 99999
best_possible_combination = ''
best_possible_idx = -1
best_possible_combination, best_possible_idx = inner_get_resulting_string(
best_possible_combination, best_possible_idx, error, position_of_real_word_indices,
word_idx, words_estimated, words_real
)
mapped_words.append(best_possible_combination)
mapped_words_indices.append(best_possible_idx)
# continue
return mapped_words, mapped_words_indices
def inner_get_resulting_string(
best_possible_combination, best_possible_idx, error, position_of_real_word_indices, word_idx, words_estimated, words_real
):
for single_word_idx in position_of_real_word_indices:
idx_above_word = single_word_idx >= len(words_estimated)
if idx_above_word:
continue
error_word = WordMetrics.edit_distance_python(
words_estimated[single_word_idx], words_real[word_idx])
if error_word < error:
error = error_word * 1
best_possible_combination = words_estimated[single_word_idx]
best_possible_idx = single_word_idx
return best_possible_combination, best_possible_idx
def get_best_mapped_words(words_estimated: list, words_real: list) -> tuple[list, list]:
word_distance_matrix = get_word_distance_matrix(
words_estimated, words_real)
start = time.time()
mapped_indices = get_best_path_from_distance_matrix(word_distance_matrix)
duration_of_mapping = time.time()-start
# In case or-tools doesn't converge, go to a faster, low-quality solution
if len(mapped_indices) == 0 or duration_of_mapping > TIME_THRESHOLD_MAPPING+0.5:
mapped_indices = (dtw_from_distance_matrix(
word_distance_matrix)).path[:len(words_estimated), 1]
mapped_words, mapped_words_indices = get_resulting_string(
mapped_indices, words_estimated, words_real)
return mapped_words, mapped_words_indices
# Faster, but not optimal
def get_best_mapped_words_dtw(words_estimated: list, words_real: list) -> list:
from dtwalign import dtw_from_distance_matrix
word_distance_matrix = get_word_distance_matrix(
words_estimated, words_real)
mapped_indices = dtw_from_distance_matrix(
word_distance_matrix).path[:-1, 0]
mapped_words, mapped_words_indices = get_resulting_string(
mapped_indices, words_estimated, words_real)
return mapped_words, mapped_words_indices
def getWhichLettersWereTranscribedCorrectly(real_word, transcribed_word):
is_leter_correct = [None]*len(real_word)
for idx, letter in enumerate(real_word):
if letter == transcribed_word[idx] or letter in punctuation:
is_leter_correct[idx] = 1
else:
is_leter_correct[idx] = 0
return is_leter_correct
def parseLetterErrorsToHTML(word_real, is_leter_correct):
word_colored = ''
correct_color_start = '*'
correct_color_end = '*'
wrong_color_start = '-'
wrong_color_end = '-'
for idx, letter in enumerate(word_real):
if is_leter_correct[idx] == 1:
word_colored += correct_color_start + letter+correct_color_end
else:
word_colored += wrong_color_start + letter+wrong_color_end
return word_colored