Spaces:
Sleeping
Sleeping
# AI Meeting note parser | |
# Author:Alec Li | |
# Date:2024-01-26 | |
# Location: Richmond Hospital Canada | |
import os | |
os.system("sudo apt-get install xclip") | |
import gradio as gr | |
import nltk | |
import pyclip | |
import pytesseract | |
from nltk.tokenize import sent_tokenize | |
from transformers import MarianMTModel, MarianTokenizer | |
import openai | |
nltk.download('punkt') | |
OCR_TR_DESCRIPTION = ''' | |
<div id="content_align"> | |
<span style="color:darkred;font-size:32px;font-weight:bold"> | |
模多多会议记录总结神器 | |
</span> | |
</div> | |
<div id="content_align"> | |
<span style="color:blue;font-size:16px;font-weight:bold"> | |
会议记录拍照 -> 转文字 -> 翻译 -> 提炼会议纪要 -> 识别待办事项 -> 分配任务 | |
</div> | |
<div id="content_align" style="margin-top: 10px;"> | |
作者: Dr. Alec Li | |
</div> | |
''' | |
# Image path | |
img_dir = "./data" | |
# Get tesseract language list | |
choices = os.popen('tesseract --list-langs').read().split('\n')[1:-1] | |
# Translation model selection | |
def model_choice(src="en", trg="zh"): | |
# https://huggingface.co/Helsinki-NLP/opus-mt-zh-en | |
# https://huggingface.co/Helsinki-NLP/opus-mt-en-zh | |
model_name = f"Helsinki-NLP/opus-mt-{src}-{trg}" # Model name | |
tokenizer = MarianTokenizer.from_pretrained(model_name) # Tokenizer | |
model = MarianMTModel.from_pretrained(model_name) # model | |
return tokenizer, model | |
# Convert tesseract language list to pytesseract language | |
def ocr_lang(lang_list): | |
lang_str = "" | |
lang_len = len(lang_list) | |
if lang_len == 1: | |
return lang_list[0] | |
else: | |
for i in range(lang_len): | |
lang_list.insert(lang_len - i, "+") | |
lang_str = "".join(lang_list[:-1]) | |
return lang_str | |
#import pytesseract | |
# Set Tesseract executable path in Colab virtal environment | |
#pytesseract.pytesseract.tesseract_cmd = "/usr/bin/tesseract" | |
# Set up the Tesseract data directory | |
#os.environ["TESSDATA_PREFIX"] = "/usr/share/tesseract-ocr/4.00/tessdata" | |
#def ocr_tesseract(img, languages): | |
# custom_config = f'--oem 3 --psm 6 -l {ocr_lang(languages)}' | |
# ocr_str = pytesseract.image_to_string(img, config=custom_config) | |
# return ocr_str | |
# ocr tesseract | |
def ocr_tesseract(img, languages): | |
ocr_str = pytesseract.image_to_string(img, lang=ocr_lang(languages)) | |
return ocr_str | |
# Clear content | |
def clear_content(): | |
return None | |
# copy to clipboard | |
def cp_text(input_text): | |
# sudo apt-get install xclip | |
try: | |
pyclip.copy(input_text) | |
except Exception as e: | |
print("sudo apt-get install xclip") | |
print(e) | |
# 清除剪贴板 | |
def cp_clear(): | |
pyclip.clear() | |
# 翻译 | |
def translate(input_text, inputs_transStyle): | |
# 参考:https://huggingface.co/docs/transformers/model_doc/marian | |
if input_text is None or input_text == "": | |
return "System prompt: There is no content to translate!" | |
# 选择翻译模型 | |
trans_src, trans_trg = inputs_transStyle.split("-")[0], inputs_transStyle.split("-")[1] | |
tokenizer, model = model_choice(trans_src, trans_trg) | |
translate_text = "" | |
input_text_list = input_text.split("\n\n") | |
translate_text_list_tmp = [] | |
for i in range(len(input_text_list)): | |
if input_text_list[i] != "": | |
translate_text_list_tmp.append(input_text_list[i]) | |
for i in range(len(translate_text_list_tmp)): | |
translated_sub = model.generate( | |
**tokenizer(sent_tokenize(translate_text_list_tmp[i]), return_tensors="pt", truncation=True, padding=True)) | |
tgt_text_sub = [tokenizer.decode(t, skip_special_tokens=True) for t in translated_sub] | |
translate_text_sub = "".join(tgt_text_sub) | |
translate_text = translate_text + "\n\n" + translate_text_sub | |
return translate_text[2:] | |
# 在 https://platform.openai.com/signup 注册并获取 API 密钥 | |
openai.api_key = os.getenv('OPENAI_API_KEY') | |
def generate_summary(text_input): | |
response = openai.ChatCompletion.create( | |
model="gpt-3.5-turbo", | |
messages=[ | |
{"role": "system", "content": "你是一个非常能干的办公助手. 请把会议记录再此总结成会议纪要,识别出不同的会议主题,并进行总结。 请识别出待办事项,并进行任务分配,并在最后总结出决策点给领导决策。"}, | |
{"role": "user", "content": text_input} | |
] | |
) | |
summary = response["choices"][0]["message"]["content"].strip() | |
return summary | |
def main(): | |
with gr.Blocks(css='style.css') as ocr_tr: | |
gr.Markdown(OCR_TR_DESCRIPTION) | |
# -------------- OCR 文字提取 -------------- | |
with gr.Column(): | |
with gr.Row(): | |
gr.Markdown("### Step 01: 文本抽取") | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Row(): | |
inputs_img = gr.Image(image_mode="RGB", type="pil", label="image") | |
with gr.Row(): | |
inputs_lang = gr.CheckboxGroup(choices=["chi_sim", "eng"], | |
type="value", | |
value=['eng'], | |
label='language') | |
with gr.Row(): | |
clear_img_btn = gr.Button('清除') | |
ocr_btn = gr.Button(value='图片文本抽取', variant="primary") | |
with gr.Column(): | |
with gr.Row(): | |
outputs_text = gr.Textbox(label="抽取的文本", lines=20) | |
with gr.Row(): | |
inputs_transStyle = gr.Radio(choices=["zh-en", "en-zh"], | |
type="value", | |
value="zh-en", | |
label='翻译模式') | |
with gr.Row(): | |
clear_text_btn = gr.Button('清除') | |
translate_btn = gr.Button(value='翻译', variant="primary") | |
# Add a text box to display the generated summary | |
with gr.Row(): | |
outputs_summary_text = gr.Textbox(label="生成的摘要", lines=20) | |
with gr.Row(): | |
with gr.Row(): | |
generate_summary_btn = gr.Button('生成摘要', variant="primary") | |
with gr.Row(): | |
clear_summary_btn = gr.Button('清除摘要') | |
with gr.Row(): | |
example_list = [["./data/test.png", ["eng"]], ["./data/test02.png", ["eng"]], | |
["./data/test03.png", ["chi_sim"]]] | |
gr.Examples(example_list, [inputs_img, inputs_lang], outputs_text, ocr_tesseract, cache_examples=False) | |
# -------------- 翻译 -------------- | |
with gr.Column(): | |
with gr.Row(): | |
gr.Markdown("### Step 02: 翻译") | |
with gr.Row(): | |
outputs_tr_text = gr.Textbox(label="Translate Content", lines=20) | |
with gr.Row(): | |
cp_clear_btn = gr.Button(value='清除剪贴板') | |
cp_btn = gr.Button(value='复制到剪贴板', variant="primary") | |
# ---------------------- OCR Tesseract ---------------------- | |
ocr_btn.click(fn=ocr_tesseract, inputs=[inputs_img, inputs_lang], outputs=[ | |
outputs_text,]) | |
clear_img_btn.click(fn=clear_content, inputs=[], outputs=[inputs_img]) | |
# ---------------------- Summarization ---------------------- | |
# To update the click event of the button, use generate_summary directly | |
generate_summary_btn.click(fn=generate_summary, inputs=[outputs_text], | |
outputs=[outputs_summary_text]) | |
clear_summary_btn.click(fn=clear_content, inputs=[], outputs=[outputs_summary_text]) | |
# ---------------------- Translate ---------------------- | |
translate_btn.click(fn=translate, inputs=[outputs_text, inputs_transStyle], outputs=[outputs_tr_text]) | |
clear_text_btn.click(fn=clear_content, inputs=[], outputs=[outputs_text]) | |
# ---------------------- Copy to clipboard ---------------------- | |
cp_btn.click(fn=cp_text, inputs=[outputs_tr_text], outputs=[]) | |
cp_clear_btn.click(fn=cp_clear, inputs=[], outputs=[]) | |
ocr_tr.launch(inbrowser=True) | |
if __name__ == '__main__': | |
main() | |