alecinvan's picture
Update app.py
d54084e verified
raw
history blame
8.15 kB
# AI Meeting note parser
# Author:Alec Li
# Date:2024-01-26
# Location: Richmond Hospital Canada
import os
os.system("sudo apt-get install xclip")
import gradio as gr
import nltk
import pyclip
import pytesseract
from nltk.tokenize import sent_tokenize
from transformers import MarianMTModel, MarianTokenizer
import openai
nltk.download('punkt')
OCR_TR_DESCRIPTION = '''
<div id="content_align">
<span style="color:darkred;font-size:32px;font-weight:bold">
模多多会议记录总结神器
</span>
</div>
<div id="content_align">
<span style="color:blue;font-size:16px;font-weight:bold">
会议记录拍照 -> 转文字 -> 翻译 -> 提炼会议纪要 -> 识别待办事项 -> 分配任务
</div>
<div id="content_align" style="margin-top: 10px;">
作者: Dr. Alec Li
</div>
'''
# Image path
img_dir = "./data"
# Get tesseract language list
choices = os.popen('tesseract --list-langs').read().split('\n')[1:-1]
# Translation model selection
def model_choice(src="en", trg="zh"):
# https://huggingface.co/Helsinki-NLP/opus-mt-zh-en
# https://huggingface.co/Helsinki-NLP/opus-mt-en-zh
model_name = f"Helsinki-NLP/opus-mt-{src}-{trg}" # Model name
tokenizer = MarianTokenizer.from_pretrained(model_name) # Tokenizer
model = MarianMTModel.from_pretrained(model_name) # model
return tokenizer, model
# Convert tesseract language list to pytesseract language
def ocr_lang(lang_list):
lang_str = ""
lang_len = len(lang_list)
if lang_len == 1:
return lang_list[0]
else:
for i in range(lang_len):
lang_list.insert(lang_len - i, "+")
lang_str = "".join(lang_list[:-1])
return lang_str
import pytesseract
import os
# Set Tesseract executable path in Colab virtal environment
pytesseract.pytesseract.tesseract_cmd = "/usr/bin/tesseract"
# Set up the Tesseract data directory
os.environ["TESSDATA_PREFIX"] = "/usr/share/tesseract-ocr/4.00/tessdata"
def ocr_tesseract(img, languages):
custom_config = f'--oem 3 --psm 6 -l {ocr_lang(languages)}'
ocr_str = pytesseract.image_to_string(img, config=custom_config)
return ocr_str
# Clear content
def clear_content():
return None
# copy to clipboard
def cp_text(input_text):
# sudo apt-get install xclip
try:
pyclip.copy(input_text)
except Exception as e:
print("sudo apt-get install xclip")
print(e)
# 清除剪贴板
def cp_clear():
pyclip.clear()
# 翻译
def translate(input_text, inputs_transStyle):
# 参考:https://huggingface.co/docs/transformers/model_doc/marian
if input_text is None or input_text == "":
return "System prompt: There is no content to translate!"
# 选择翻译模型
trans_src, trans_trg = inputs_transStyle.split("-")[0], inputs_transStyle.split("-")[1]
tokenizer, model = model_choice(trans_src, trans_trg)
translate_text = ""
input_text_list = input_text.split("\n\n")
translate_text_list_tmp = []
for i in range(len(input_text_list)):
if input_text_list[i] != "":
translate_text_list_tmp.append(input_text_list[i])
for i in range(len(translate_text_list_tmp)):
translated_sub = model.generate(
**tokenizer(sent_tokenize(translate_text_list_tmp[i]), return_tensors="pt", truncation=True, padding=True))
tgt_text_sub = [tokenizer.decode(t, skip_special_tokens=True) for t in translated_sub]
translate_text_sub = "".join(tgt_text_sub)
translate_text = translate_text + "\n\n" + translate_text_sub
return translate_text[2:]
# 在 https://platform.openai.com/signup 注册并获取 API 密钥
openai.api_key = "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"
def generate_summary(text_input):
response = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=[
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": text_input}
]
)
summary = response["choices"][0]["message"]["content"].strip()
return summary
def main():
with gr.Blocks(css='style.css') as ocr_tr:
gr.Markdown(OCR_TR_DESCRIPTION)
# -------------- OCR 文字提取 --------------
with gr.Column():
with gr.Row():
gr.Markdown("### Step 01: 文本抽取")
with gr.Row():
with gr.Column():
with gr.Row():
inputs_img = gr.Image(image_mode="RGB", type="pil", label="image")
with gr.Row():
inputs_lang = gr.CheckboxGroup(choices=["chi_sim", "eng"],
type="value",
value=['eng'],
label='language')
with gr.Row():
clear_img_btn = gr.Button('清除')
ocr_btn = gr.Button(value='图片文本抽取', variant="primary")
with gr.Column():
with gr.Row():
outputs_text = gr.Textbox(label="抽取的文本", lines=20)
with gr.Row():
inputs_transStyle = gr.Radio(choices=["zh-en", "en-zh"],
type="value",
value="zh-en",
label='翻译模式')
with gr.Row():
clear_text_btn = gr.Button('清除')
translate_btn = gr.Button(value='翻译', variant="primary")
# Add a text box to display the generated summary
with gr.Row():
outputs_summary_text = gr.Textbox(label="生成的摘要", lines=20)
with gr.Row():
with gr.Row():
generate_summary_btn = gr.Button('生成摘要', variant="primary")
with gr.Row():
clear_summary_btn = gr.Button('清除摘要')
with gr.Row():
example_list = [["./data/test.png", ["eng"]], ["./data/test02.png", ["eng"]],
["./data/test03.png", ["chi_sim"]]]
gr.Examples(example_list, [inputs_img, inputs_lang], outputs_text, ocr_tesseract, cache_examples=False)
# -------------- 翻译 --------------
with gr.Column():
with gr.Row():
gr.Markdown("### Step 02: 翻译")
with gr.Row():
outputs_tr_text = gr.Textbox(label="Translate Content", lines=20)
with gr.Row():
cp_clear_btn = gr.Button(value='清除剪贴板')
cp_btn = gr.Button(value='复制到剪贴板', variant="primary")
# ---------------------- OCR Tesseract ----------------------
ocr_btn.click(fn=ocr_tesseract, inputs=[inputs_img, inputs_lang], outputs=[
outputs_text,])
clear_img_btn.click(fn=clear_content, inputs=[], outputs=[inputs_img])
# ---------------------- Summarization ----------------------
# To update the click event of the button, use generate_summary directly
generate_summary_btn.click(fn=generate_summary, inputs=[outputs_text],
outputs=[outputs_summary_text])
clear_summary_btn.click(fn=clear_content, inputs=[], outputs=[outputs_summary_text])
# ---------------------- Translate ----------------------
translate_btn.click(fn=translate, inputs=[outputs_text, inputs_transStyle], outputs=[outputs_tr_text])
clear_text_btn.click(fn=clear_content, inputs=[], outputs=[outputs_text])
# ---------------------- Copy to clipboard ----------------------
cp_btn.click(fn=cp_text, inputs=[outputs_tr_text], outputs=[])
cp_clear_btn.click(fn=cp_clear, inputs=[], outputs=[])
ocr_tr.launch(inbrowser=True, share=True)
if __name__ == '__main__':
main()