Spaces:
Runtime error
Runtime error
import torch | |
import torch.nn.functional as F | |
import torchaudio | |
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC | |
from src.multimodal import MultimodalSentimentClassifier | |
# 1. Transcription CTC | |
def transcribe(audio_path: str) -> str: | |
processor = Wav2Vec2Processor.from_pretrained( | |
"jonatasgrosman/wav2vec2-large-xlsr-53-french", | |
#cache_dir="./models" | |
) | |
model_ctc = Wav2Vec2ForCTC.from_pretrained( | |
"jonatasgrosman/wav2vec2-large-xlsr-53-french", | |
#cache_dir="./models" | |
) | |
waveform, sr = torchaudio.load(audio_path) | |
if sr != 16000: | |
waveform = torchaudio.transforms.Resample(sr, 16000)(waveform) | |
if waveform.size(0) > 1: | |
waveform = waveform.mean(dim=0, keepdim=True) | |
inputs = processor( | |
waveform.squeeze().numpy(), | |
sampling_rate=16000, | |
return_tensors="pt", | |
padding=True | |
) | |
with torch.no_grad(): | |
logits = model_ctc(**inputs).logits | |
predicted_ids = torch.argmax(logits, dim=-1) | |
transcription = processor.batch_decode(predicted_ids)[0] | |
return transcription.lower() | |
# 2. Inférence multimodale | |
def infer(audio_path: str) -> dict: | |
# a) transcrire l’audio | |
text = transcribe(audio_path) | |
# b) charger et exécuter le modèle multimodal | |
model = MultimodalSentimentClassifier() | |
logits = model(audio_path, text) # [1, n_classes] | |
probs = F.softmax(logits, dim=1).squeeze().tolist() | |
labels = ["négatif", "neutre", "positif"] | |
return { labels[i]: round(probs[i], 3) for i in range(len(labels)) } | |
# Test rapide en ligne de commande | |
if __name__ == "__main__": | |
import sys | |
if len(sys.argv) != 2: | |
print("Usage: python src/inference.py <chemin_vers_audio.wav>") | |
sys.exit(1) | |
res = infer(sys.argv[1]) | |
print(f"Résultat multimodal : {res}") | |