audio-sentiment / app_with_api.py
alec228's picture
Fix: Configuration HF Spaces dans README.md
0986800
import os
import re
from datetime import datetime
import asyncio
import threading
import gradio as gr
import torch
import pandas as pd
import soundfile as sf
import torchaudio
from fastapi import FastAPI, File, UploadFile, HTTPException
from fastapi.responses import JSONResponse
from fastapi.middleware.cors import CORSMiddleware
import torch.nn.functional as F
import uvicorn
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC
from src.transcription import SpeechEncoder
from src.sentiment import TextEncoder
from src.multimodal import MultimodalSentimentClassifier
# Configuration pour Hugging Face Spaces
HF_SPACE = os.getenv("HF_SPACE", "false").lower() == "true"
# Préchargement des modèles (partagés entre Gradio et API)
print("Chargement des modèles...")
# Modèle français plus léger
processor_ctc = Wav2Vec2Processor.from_pretrained(
"LeBenchmark/wav2vec2-FR-2K-small",
cache_dir="./models" if not HF_SPACE else None
)
model_ctc = Wav2Vec2ForCTC.from_pretrained(
"LeBenchmark/wav2vec2-FR-2K-small",
cache_dir="./models" if not HF_SPACE else None
)
speech_enc = SpeechEncoder()
text_enc = TextEncoder()
print("Modèles chargés avec succès!")
# ===== FONCTIONS PARTAGÉES =====
def transcribe_ctc(wav_path: str) -> str:
"""Transcription audio avec Wav2Vec2"""
try:
waveform, sr = torchaudio.load(wav_path)
if sr != 16000:
waveform = torchaudio.transforms.Resample(sr, 16000)(waveform)
if waveform.size(0) > 1:
waveform = waveform.mean(dim=0, keepdim=True)
inputs = processor_ctc(
waveform.squeeze().numpy(),
sampling_rate=16000,
return_tensors="pt",
padding=True
)
with torch.no_grad():
logits = model_ctc(**inputs).logits
pred_ids = torch.argmax(logits, dim=-1)
transcription = processor_ctc.batch_decode(pred_ids)[0].lower()
return transcription
except Exception as e:
raise Exception(f"Erreur transcription: {str(e)}")
def analyze_audio(audio_path):
"""Analyse audio pour Gradio"""
if audio_path is None:
return "Aucun audio fourni", "", pd.DataFrame(), {}
try:
# Lecture et prétraitement
data, sr = sf.read(audio_path)
arr = data.T if data.ndim > 1 else data
wav = torch.from_numpy(arr).unsqueeze(0).float()
if sr != 16000:
wav = torchaudio.transforms.Resample(sr, 16000)(wav)
sr = 16000
if wav.size(0) > 1:
wav = wav.mean(dim=0, keepdim=True)
# Transcription
inputs = processor_ctc(wav.squeeze().numpy(), sampling_rate=sr, return_tensors="pt")
with torch.no_grad():
logits = model_ctc(**inputs).logits
pred_ids = torch.argmax(logits, dim=-1)
transcription = processor_ctc.batch_decode(pred_ids)[0].lower()
# Sentiment principal
sent_dict = TextEncoder.analyze_sentiment(transcription)
label, conf = max(sent_dict.items(), key=lambda x: x[1])
emojis = {"positif": "😊", "neutre": "😐", "négatif": "☹️"}
emoji = emojis.get(label, "")
# Segmentation par phrase
segments = [s.strip() for s in re.split(r'[.?!]', transcription) if s.strip()]
seg_results = []
for seg in segments:
sd = TextEncoder.analyze_sentiment(seg)
l, c = max(sd.items(), key=lambda x: x[1])
seg_results.append({"Segment": seg, "Sentiment": l.capitalize(), "Confiance (%)": round(c*100,1)})
seg_df = pd.DataFrame(seg_results)
# Historique entry
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
history_entry = {
"Horodatage": timestamp,
"Transcription": transcription,
"Sentiment": label.capitalize(),
"Confiance (%)": round(conf*100,1)
}
# Rendu
summary_html = (
f"<div style='display:flex;align-items:center;'>"
f"<span style='font-size:3rem;margin-right:10px;'>{emoji}</span>"
f"<h2 style='color:#6a0dad;'>{label.upper()}</h2>"
f"</div>"
f"<p><strong>Confiance :</strong> {conf*100:.1f}%</p>"
)
return transcription, summary_html, seg_df, history_entry
except Exception as e:
error_msg = f"Erreur lors de l'analyse: {str(e)}"
return error_msg, "", pd.DataFrame(), {}
# ===== API FASTAPI =====
app = FastAPI(
title="API Multimodale de Transcription & Sentiment",
description="API pour l'analyse de sentiment audio en français",
version="1.0",
docs_url="/api/docs",
redoc_url="/api/redoc"
)
# Configuration CORS
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
@app.get("/api/")
async def root():
"""Endpoint racine avec informations sur l'API"""
return {
"message": "API Multimodale de Transcription & Sentiment",
"version": "1.0",
"endpoints": {
"docs": "/api/docs",
"predict": "/api/predict",
"health": "/api/health"
},
"supported_formats": ["wav", "flac", "mp3"]
}
@app.get("/api/health")
async def health_check():
"""Vérification de l'état de l'API"""
return {
"status": "healthy",
"models_loaded": True,
"timestamp": "2024-01-01T00:00:00Z"
}
@app.post("/api/predict")
async def predict(file: UploadFile = File(...)):
"""Analyse de sentiment audio"""
# 1. Vérifier le type de fichier
if not file.filename or not file.filename.lower().endswith((".wav", ".flac", ".mp3")):
raise HTTPException(
status_code=400,
detail="Seuls les fichiers audio WAV/FLAC/MP3 sont acceptés."
)
# 2. Vérifier la taille du fichier (max 50MB)
content = await file.read()
if len(content) > 50 * 1024 * 1024: # 50MB
raise HTTPException(
status_code=400,
detail="Fichier trop volumineux. Taille maximale: 50MB"
)
# 3. Sauvegarder temporairement
import tempfile
suffix = os.path.splitext(file.filename)[1]
with tempfile.NamedTemporaryFile(suffix=suffix, delete=False) as tmp:
tmp.write(content)
tmp_path = tmp.name
try:
# 4. Transcription
transcription = transcribe_ctc(tmp_path)
if not transcription.strip():
return JSONResponse({
"transcription": "",
"sentiment": {"négatif": 0.33, "neutre": 0.34, "positif": 0.33},
"warning": "Aucune transcription détectée"
})
# 5. Features multimodales
try:
audio_feat = speech_enc.extract_features(tmp_path)
text_feat = text_enc.extract_features([transcription])
# 6. Classification
logits = model_mm.classifier(torch.cat([audio_feat, text_feat], dim=1))
probs = F.softmax(logits, dim=1).squeeze().tolist()
labels = ["négatif", "neutre", "positif"]
sentiment = {labels[i]: round(probs[i], 3) for i in range(len(labels))}
except Exception as e:
# Fallback vers analyse textuelle uniquement
print(f"Erreur multimodal, fallback textuel: {e}")
sent_dict = TextEncoder.analyze_sentiment(transcription)
sentiment = {k: round(v, 3) for k, v in sent_dict.items()}
return JSONResponse({
"transcription": transcription,
"sentiment": sentiment,
"filename": file.filename,
"file_size": len(content)
})
except Exception as e:
raise HTTPException(status_code=500, detail=f"Erreur lors de l'analyse: {str(e)}")
finally:
# Nettoyage fichier temporaire
try:
os.remove(tmp_path)
except:
pass
@app.post("/api/predict_text")
async def predict_text(text: str):
"""Analyse de sentiment textuel uniquement"""
try:
sent_dict = TextEncoder.analyze_sentiment(text)
sentiment = {k: round(v, 3) for k, v in sent_dict.items()}
return JSONResponse({
"text": text,
"sentiment": sentiment
})
except Exception as e:
raise HTTPException(status_code=500, detail=f"Erreur analyse textuelle: {str(e)}")
# ===== INTERFACE GRADIO =====
def export_history_csv(history):
if not history:
return None
df = pd.DataFrame(history)
path = "history.csv"
df.to_csv(path, index=False)
return path
# Interface Gradio
demo = gr.Blocks(
theme=gr.themes.Monochrome(primary_hue="purple"),
title="Analyse de Sentiment Audio - Hugging Face Space"
)
with demo:
gr.Markdown("""
# 🎤 Analyse de Sentiment Audio
Ce Space permet d'analyser le sentiment d'extraits audio en français en combinant :
- **Transcription audio** avec Wav2Vec2
- **Analyse de sentiment** avec BERT multilingue
- **API REST** pour intégration
""")
gr.HTML("""
<div style="display: flex; flex-direction: column; gap: 10px; margin-bottom: 20px;">
<div style="background-color: #f3e8ff; padding: 12px 20px; border-radius: 12px; border-left: 5px solid #8e44ad;">
<strong>Étape 1 :</strong> Enregistrez votre voix ou téléversez un fichier audio (format WAV recommandé).
</div>
<div style="background-color: #e0f7fa; padding: 12px 20px; border-radius: 12px; border-left: 5px solid #0097a7;">
<strong>Étape 2 :</strong> Cliquez sur le bouton <em><b>Analyser</b></em> pour lancer la transcription et l'analyse.
</div>
<div style="background-color: #fff3e0; padding: 12px 20px; border-radius: 12px; border-left: 5px solid #fb8c00;">
<strong>Étape 3 :</strong> Visualisez les résultats : transcription, sentiment, et analyse détaillée.
</div>
<div style="background-color: #e8f5e9; padding: 12px 20px; border-radius: 12px; border-left: 5px solid #43a047;">
<strong>Étape 4 :</strong> Exportez l'historique des analyses au format CSV si besoin.
</div>
</div>
""")
# Section API
with gr.Accordion("🔌 API REST", open=False):
gr.Markdown("""
### Endpoints disponibles :
- **`/api/predict`** - Analyse audio (POST)
- **`/api/predict_text`** - Analyse textuelle (POST)
- **`/api/health`** - Vérification état (GET)
- **`/api/docs`** - Documentation Swagger
### Exemple d'utilisation :
```bash
curl -X POST "https://huggingface.co/spaces/<username>/sentiment-audio-analyzer/api/predict" \
-F "file=@audio.wav"
```
""")
with gr.Row():
with gr.Column(scale=2):
audio_in = gr.Audio(
sources=["microphone", "upload"],
type="filepath",
label="Audio Input"
)
btn = gr.Button("🔍 Analyser", variant="primary")
export_btn = gr.Button("📊 Exporter CSV")
with gr.Column(scale=3):
chat = gr.Chatbot(label="Historique des échanges")
transcription_out = gr.Textbox(label="Transcription", interactive=False)
summary_out = gr.HTML(label="Sentiment")
seg_out = gr.Dataframe(label="Détail par segment")
hist_out = gr.Dataframe(label="Historique")
state_chat = gr.State([])
state_hist = gr.State([])
def chat_callback(audio_path, chat_history, hist_state):
transcription, summary, seg_df, hist_entry = analyze_audio(audio_path)
user_msg = "[Audio reçu]"
bot_msg = f"**Transcription :** {transcription}\n**Sentiment :** {summary}"
chat_history = chat_history + [(user_msg, bot_msg)]
if hist_entry:
hist_state = hist_state + [hist_entry]
return chat_history, transcription, summary, seg_df, hist_state
btn.click(
fn=chat_callback,
inputs=[audio_in, state_chat, state_hist],
outputs=[chat, transcription_out, summary_out, seg_out, state_hist]
)
export_btn.click(
fn=export_history_csv,
inputs=[state_hist],
outputs=[gr.File(label="Télécharger CSV")]
)
# ===== INTÉGRATION GRADIO + FASTAPI =====
# Monter l'API FastAPI dans Gradio
app = gr.mount_gradio_app(app, demo, path="/")
# Configuration pour Hugging Face Spaces
if __name__ == "__main__":
uvicorn.run(
app,
host="0.0.0.0" if HF_SPACE else "127.0.0.1",
port=7860,
log_level="info"
)