Spaces:
Running
on
Zero
Running
on
Zero
# Part of the implementation is borrowed and modified from stable-diffusion, | |
# publicly avaialbe at https://github.com/Stability-AI/stablediffusion. | |
# Copyright 2021-2022 The Alibaba Fundamental Vision Team Authors. All rights reserved. | |
import math | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from einops import rearrange, repeat | |
__all__ = ['UNetSD'] | |
def exists(x): | |
return x is not None | |
def default(val, d): | |
if exists(val): | |
return val | |
return d() if callable(d) else d | |
class UNetSD(nn.Module): | |
def __init__(self, | |
in_dim=7, | |
dim=512, | |
y_dim=512, | |
context_dim=512, | |
out_dim=6, | |
dim_mult=[1, 2, 3, 4], | |
num_heads=None, | |
head_dim=64, | |
num_res_blocks=3, | |
attn_scales=[1 / 2, 1 / 4, 1 / 8], | |
use_scale_shift_norm=True, | |
dropout=0.1, | |
temporal_attn_times=2, | |
temporal_attention=True, | |
use_checkpoint=False, | |
use_image_dataset=False, | |
use_fps_condition=False, | |
use_sim_mask=False): | |
embed_dim = dim * 4 | |
num_heads = num_heads if num_heads else dim // 32 | |
super(UNetSD, self).__init__() | |
self.in_dim = in_dim | |
self.dim = dim | |
self.y_dim = y_dim | |
self.context_dim = context_dim | |
self.embed_dim = embed_dim | |
self.out_dim = out_dim | |
self.dim_mult = dim_mult | |
self.num_heads = num_heads | |
# parameters for spatial/temporal attention | |
self.head_dim = head_dim | |
self.num_res_blocks = num_res_blocks | |
self.attn_scales = attn_scales | |
self.use_scale_shift_norm = use_scale_shift_norm | |
self.temporal_attn_times = temporal_attn_times | |
self.temporal_attention = temporal_attention | |
self.use_checkpoint = use_checkpoint | |
self.use_image_dataset = use_image_dataset | |
self.use_fps_condition = use_fps_condition | |
self.use_sim_mask = use_sim_mask | |
use_linear_in_temporal = False | |
transformer_depth = 1 | |
disabled_sa = False | |
# params | |
enc_dims = [dim * u for u in [1] + dim_mult] | |
dec_dims = [dim * u for u in [dim_mult[-1]] + dim_mult[::-1]] | |
shortcut_dims = [] | |
scale = 1.0 | |
# embeddings | |
self.time_embed = nn.Sequential( | |
nn.Linear(dim, embed_dim), nn.SiLU(), | |
nn.Linear(embed_dim, embed_dim)) | |
if self.use_fps_condition: | |
self.fps_embedding = nn.Sequential( | |
nn.Linear(dim, embed_dim), nn.SiLU(), | |
nn.Linear(embed_dim, embed_dim)) | |
nn.init.zeros_(self.fps_embedding[-1].weight) | |
nn.init.zeros_(self.fps_embedding[-1].bias) | |
# encoder | |
self.input_blocks = nn.ModuleList() | |
init_block = nn.ModuleList([nn.Conv2d(self.in_dim, dim, 3, padding=1)]) | |
if temporal_attention: | |
init_block.append( | |
TemporalTransformer( | |
dim, | |
num_heads, | |
head_dim, | |
depth=transformer_depth, | |
context_dim=context_dim, | |
disable_self_attn=disabled_sa, | |
use_linear=use_linear_in_temporal, | |
multiply_zero=use_image_dataset)) | |
self.input_blocks.append(init_block) | |
shortcut_dims.append(dim) | |
for i, (in_dim, | |
out_dim) in enumerate(zip(enc_dims[:-1], enc_dims[1:])): | |
for j in range(num_res_blocks): | |
# residual (+attention) blocks | |
block = nn.ModuleList([ | |
ResBlock( | |
in_dim, | |
embed_dim, | |
dropout, | |
out_channels=out_dim, | |
use_scale_shift_norm=False, | |
use_image_dataset=use_image_dataset, | |
) | |
]) | |
if scale in attn_scales: | |
block.append( | |
SpatialTransformer( | |
out_dim, | |
out_dim // head_dim, | |
head_dim, | |
depth=1, | |
context_dim=self.context_dim, | |
disable_self_attn=False, | |
use_linear=True)) | |
if self.temporal_attention: | |
block.append( | |
TemporalTransformer( | |
out_dim, | |
out_dim // head_dim, | |
head_dim, | |
depth=transformer_depth, | |
context_dim=context_dim, | |
disable_self_attn=disabled_sa, | |
use_linear=use_linear_in_temporal, | |
multiply_zero=use_image_dataset)) | |
in_dim = out_dim | |
self.input_blocks.append(block) | |
shortcut_dims.append(out_dim) | |
# downsample | |
if i != len(dim_mult) - 1 and j == num_res_blocks - 1: | |
downsample = Downsample( | |
out_dim, True, dims=2, out_channels=out_dim) | |
shortcut_dims.append(out_dim) | |
scale /= 2.0 | |
self.input_blocks.append(downsample) | |
# middle | |
self.middle_block = nn.ModuleList([ | |
ResBlock( | |
out_dim, | |
embed_dim, | |
dropout, | |
use_scale_shift_norm=False, | |
use_image_dataset=use_image_dataset, | |
), | |
SpatialTransformer( | |
out_dim, | |
out_dim // head_dim, | |
head_dim, | |
depth=1, | |
context_dim=self.context_dim, | |
disable_self_attn=False, | |
use_linear=True) | |
]) | |
if self.temporal_attention: | |
self.middle_block.append( | |
TemporalTransformer( | |
out_dim, | |
out_dim // head_dim, | |
head_dim, | |
depth=transformer_depth, | |
context_dim=context_dim, | |
disable_self_attn=disabled_sa, | |
use_linear=use_linear_in_temporal, | |
multiply_zero=use_image_dataset, | |
)) | |
self.middle_block.append( | |
ResBlock( | |
out_dim, | |
embed_dim, | |
dropout, | |
use_scale_shift_norm=False, | |
use_image_dataset=use_image_dataset, | |
)) | |
# decoder | |
self.output_blocks = nn.ModuleList() | |
for i, (in_dim, | |
out_dim) in enumerate(zip(dec_dims[:-1], dec_dims[1:])): | |
for j in range(num_res_blocks + 1): | |
# residual (+attention) blocks | |
block = nn.ModuleList([ | |
ResBlock( | |
in_dim + shortcut_dims.pop(), | |
embed_dim, | |
dropout, | |
out_dim, | |
use_scale_shift_norm=False, | |
use_image_dataset=use_image_dataset, | |
) | |
]) | |
if scale in attn_scales: | |
block.append( | |
SpatialTransformer( | |
out_dim, | |
out_dim // head_dim, | |
head_dim, | |
depth=1, | |
context_dim=1024, | |
disable_self_attn=False, | |
use_linear=True)) | |
if self.temporal_attention: | |
block.append( | |
TemporalTransformer( | |
out_dim, | |
out_dim // head_dim, | |
head_dim, | |
depth=transformer_depth, | |
context_dim=context_dim, | |
disable_self_attn=disabled_sa, | |
use_linear=use_linear_in_temporal, | |
multiply_zero=use_image_dataset)) | |
in_dim = out_dim | |
# upsample | |
if i != len(dim_mult) - 1 and j == num_res_blocks: | |
upsample = Upsample( | |
out_dim, True, dims=2.0, out_channels=out_dim) | |
scale *= 2.0 | |
block.append(upsample) | |
self.output_blocks.append(block) | |
# head | |
self.out = nn.Sequential( | |
nn.GroupNorm(32, out_dim), nn.SiLU(), | |
nn.Conv2d(out_dim, self.out_dim, 3, padding=1)) | |
# zero out the last layer params | |
nn.init.zeros_(self.out[-1].weight) | |
def forward( | |
self, | |
x, | |
t, | |
y, | |
fps=None, | |
video_mask=None, | |
focus_present_mask=None, | |
prob_focus_present=0., | |
mask_last_frame_num=0 # mask last frame num | |
): | |
""" | |
prob_focus_present: probability at which a given batch sample will focus on the present | |
(0. is all off, 1. is completely arrested attention across time) | |
""" | |
batch, device = x.shape[0], x.device | |
self.batch = batch | |
# image and video joint training, if mask_last_frame_num is set, prob_focus_present will be ignored | |
if mask_last_frame_num > 0: | |
focus_present_mask = None | |
video_mask[-mask_last_frame_num:] = False | |
else: | |
focus_present_mask = default( | |
focus_present_mask, lambda: prob_mask_like( | |
(batch, ), prob_focus_present, device=device)) | |
time_rel_pos_bias = None | |
# embeddings | |
if self.use_fps_condition and fps is not None: | |
e = self.time_embed(sinusoidal_embedding( | |
t, self.dim)) + self.fps_embedding( | |
sinusoidal_embedding(fps, self.dim)) | |
else: | |
e = self.time_embed(sinusoidal_embedding(t, self.dim)) | |
context = y | |
# repeat f times for spatial e and context | |
f = x.shape[2] | |
e = e.repeat_interleave(repeats=f, dim=0) | |
if isinstance(context, (tuple, list)): | |
context = ( | |
context[0].repeat_interleave(repeats=f, dim=0), | |
context[1].repeat_interleave(repeats=f, dim=0), | |
) | |
else: | |
context = context.repeat_interleave(repeats=f, dim=0) | |
# always in shape (b f) c h w, except for temporal layer | |
x = rearrange(x, 'b c f h w -> (b f) c h w') | |
# encoder | |
xs = [] | |
for block in self.input_blocks: | |
x = self._forward_single(block, x, e, context, time_rel_pos_bias, | |
focus_present_mask, video_mask) | |
xs.append(x) | |
# middle | |
for block in self.middle_block: | |
x = self._forward_single(block, x, e, context, time_rel_pos_bias, | |
focus_present_mask, video_mask) | |
# decoder | |
for block in self.output_blocks: | |
x = torch.cat([x, xs.pop()], dim=1) | |
x = self._forward_single( | |
block, | |
x, | |
e, | |
context, | |
time_rel_pos_bias, | |
focus_present_mask, | |
video_mask, | |
reference=xs[-1] if len(xs) > 0 else None) | |
# head | |
x = self.out(x) | |
# reshape back to (b c f h w) | |
x = rearrange(x, '(b f) c h w -> b c f h w', b=batch) | |
return x | |
def _forward_single(self, | |
module, | |
x, | |
e, | |
context, | |
time_rel_pos_bias, | |
focus_present_mask, | |
video_mask, | |
reference=None): | |
if isinstance(module, ResidualBlock): | |
x = x.contiguous() | |
x = module(x, e, reference) | |
elif isinstance(module, ResBlock): | |
x = x.contiguous() | |
x = module(x, e, self.batch) | |
elif isinstance(module, SpatialTransformer): | |
x = module(x, context) | |
elif isinstance(module, TemporalTransformer): | |
x = rearrange(x, '(b f) c h w -> b c f h w', b=self.batch) | |
x = module(x, context) | |
x = rearrange(x, 'b c f h w -> (b f) c h w') | |
elif isinstance(module, CrossAttention): | |
x = module(x, context) | |
elif isinstance(module, BasicTransformerBlock): | |
x = module(x, context) | |
elif isinstance(module, FeedForward): | |
x = module(x, context) | |
elif isinstance(module, Upsample): | |
x = module(x) | |
elif isinstance(module, Downsample): | |
x = module(x) | |
elif isinstance(module, Resample): | |
x = module(x, reference) | |
elif isinstance(module, nn.ModuleList): | |
for block in module: | |
x = self._forward_single(block, x, e, context, | |
time_rel_pos_bias, focus_present_mask, | |
video_mask, reference) | |
else: | |
x = module(x) | |
return x | |
def sinusoidal_embedding(timesteps, dim): | |
# check input | |
half = dim // 2 | |
timesteps = timesteps.float() | |
# compute sinusoidal embedding | |
sinusoid = torch.outer( | |
timesteps, torch.pow(10000, | |
-torch.arange(half).to(timesteps).div(half))) | |
x = torch.cat([torch.cos(sinusoid), torch.sin(sinusoid)], dim=1) | |
if dim % 2 != 0: | |
x = torch.cat([x, torch.zeros_like(x[:, :1])], dim=1) | |
return x | |
class CrossAttention(nn.Module): | |
def __init__(self, | |
query_dim, | |
context_dim=None, | |
heads=8, | |
dim_head=64, | |
dropout=0.): | |
super().__init__() | |
inner_dim = dim_head * heads | |
context_dim = default(context_dim, query_dim) | |
self.scale = dim_head**-0.5 | |
self.heads = heads | |
self.to_q = nn.Linear(query_dim, inner_dim, bias=False) | |
self.to_k = nn.Linear(context_dim, inner_dim, bias=False) | |
self.to_v = nn.Linear(context_dim, inner_dim, bias=False) | |
self.to_out = nn.Sequential( | |
nn.Linear(inner_dim, query_dim), nn.Dropout(dropout)) | |
self.ptp_sa_replace = False | |
self.num_frames = 1 # for ptp sa replacement use | |
def forward(self, x, context=None, mask=None): | |
h = self.heads | |
q = self.to_q(x) | |
is_self_attn = context is None | |
context = default(context, x) | |
if (isinstance(context, list) or isinstance(context, tuple)): | |
k = self.to_k(context[0]) # use old prompt's new mapping in new prompt for key | |
v = self.to_v(context[1]) # use new prompt for value | |
else: | |
k = self.to_k(context) | |
v = self.to_v(context) | |
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), | |
(q, k, v)) | |
sim = torch.einsum('b i d, b j d -> b i j', q, k) * self.scale | |
del q, k | |
if is_self_attn and self.ptp_sa_replace: #and x.shape[0] < x.shape[1]: | |
if x.shape[0] < x.shape[1]: | |
# spatial attention | |
sim = rearrange(sim, '(b f h) l d -> b f h l d', b=4, f=self.num_frames, h=h) | |
sims = sim.chunk(4) | |
sim = torch.cat((sims[0], sims[0], sims[2], sims[2])) | |
sim = rearrange(sim, 'b f h l d -> (b f h) l d') | |
else: | |
# pass | |
# temporal attention | |
sim = rearrange(sim, '(b l) f d -> b l f d', b=4) | |
sims = sim.chunk(4) | |
sim = torch.cat((sims[0], sims[0], sims[2], sims[2])) | |
sim = rearrange(sim, 'b l f d -> (b l) f d') | |
if exists(mask): | |
mask = rearrange(mask, 'b ... -> b (...)') | |
max_neg_value = -torch.finfo(sim.dtype).max | |
mask = repeat(mask, 'b j -> (b h) () j', h=h) | |
sim.masked_fill_(~mask, max_neg_value) | |
# attention, what we cannot get enough of | |
sim = sim.softmax(dim=-1) | |
out = torch.einsum('b i j, b j d -> b i d', sim, v) | |
out = rearrange(out, '(b h) n d -> b n (h d)', h=h) | |
return self.to_out(out) | |
class SpatialTransformer(nn.Module): | |
""" | |
Transformer block for image-like data in spatial axis. | |
First, project the input (aka embedding) | |
and reshape to b, t, d. | |
Then apply standard transformer action. | |
Finally, reshape to image | |
NEW: use_linear for more efficiency instead of the 1x1 convs | |
""" | |
def __init__(self, | |
in_channels, | |
n_heads, | |
d_head, | |
depth=1, | |
dropout=0., | |
context_dim=None, | |
disable_self_attn=False, | |
use_linear=False, | |
use_checkpoint=True): | |
super().__init__() | |
if exists(context_dim) and not isinstance(context_dim, list): | |
context_dim = [context_dim] | |
self.in_channels = in_channels | |
inner_dim = n_heads * d_head | |
self.norm = torch.nn.GroupNorm( | |
num_groups=32, num_channels=in_channels, eps=1e-6, affine=True) | |
if not use_linear: | |
self.proj_in = nn.Conv2d( | |
in_channels, inner_dim, kernel_size=1, stride=1, padding=0) | |
else: | |
self.proj_in = nn.Linear(in_channels, inner_dim) | |
self.transformer_blocks = nn.ModuleList([ | |
BasicTransformerBlock( | |
inner_dim, | |
n_heads, | |
d_head, | |
dropout=dropout, | |
context_dim=context_dim[d], | |
disable_self_attn=disable_self_attn, | |
checkpoint=use_checkpoint) for d in range(depth) | |
]) | |
if not use_linear: | |
self.proj_out = zero_module( | |
nn.Conv2d( | |
inner_dim, in_channels, kernel_size=1, stride=1, | |
padding=0)) | |
else: | |
self.proj_out = zero_module(nn.Linear(in_channels, inner_dim)) | |
self.use_linear = use_linear | |
def forward(self, x, context=None): | |
# note: if no context is given, cross-attention defaults to self-attention | |
if not isinstance(context, list): | |
context = [context] | |
b, c, h, w = x.shape | |
x_in = x | |
x = self.norm(x) | |
if not self.use_linear: | |
x = self.proj_in(x) | |
x = rearrange(x, 'b c h w -> b (h w) c').contiguous() | |
if self.use_linear: | |
x = self.proj_in(x) | |
for i, block in enumerate(self.transformer_blocks): | |
x = block(x, context=context[i]) | |
if self.use_linear: | |
x = self.proj_out(x) | |
x = rearrange(x, 'b (h w) c -> b c h w', h=h, w=w).contiguous() | |
if not self.use_linear: | |
x = self.proj_out(x) | |
return x + x_in | |
class TemporalTransformer(nn.Module): | |
""" | |
Transformer block for image-like data in temporal axis. | |
First, reshape to b, t, d. | |
Then apply standard transformer action. | |
Finally, reshape to image | |
""" | |
def __init__(self, | |
in_channels, | |
n_heads, | |
d_head, | |
depth=1, | |
dropout=0., | |
context_dim=None, | |
disable_self_attn=False, | |
use_linear=False, | |
use_checkpoint=True, | |
only_self_att=True, | |
multiply_zero=False): | |
super().__init__() | |
self.multiply_zero = multiply_zero | |
self.only_self_att = only_self_att | |
if self.only_self_att: | |
context_dim = None | |
if not isinstance(context_dim, list): | |
context_dim = [context_dim] | |
self.in_channels = in_channels | |
inner_dim = n_heads * d_head | |
self.norm = torch.nn.GroupNorm( | |
num_groups=32, num_channels=in_channels, eps=1e-6, affine=True) | |
if not use_linear: | |
self.proj_in = nn.Conv1d( | |
in_channels, inner_dim, kernel_size=1, stride=1, padding=0) | |
else: | |
self.proj_in = nn.Linear(in_channels, inner_dim) | |
self.transformer_blocks = nn.ModuleList([ | |
BasicTransformerBlock( | |
inner_dim, | |
n_heads, | |
d_head, | |
dropout=dropout, | |
context_dim=context_dim[d], | |
checkpoint=use_checkpoint) for d in range(depth) | |
]) | |
if not use_linear: | |
self.proj_out = zero_module( | |
nn.Conv1d( | |
inner_dim, in_channels, kernel_size=1, stride=1, | |
padding=0)) | |
else: | |
self.proj_out = zero_module(nn.Linear(in_channels, inner_dim)) | |
self.use_linear = use_linear | |
def forward(self, x, context=None): | |
# note: if no context is given, cross-attention defaults to self-attention | |
if self.only_self_att: | |
context = None | |
if not isinstance(context, list): | |
context = [context] | |
b, c, f, h, w = x.shape | |
x_in = x | |
x = self.norm(x) | |
if not self.use_linear: | |
x = rearrange(x, 'b c f h w -> (b h w) c f').contiguous() | |
x = self.proj_in(x) | |
if self.use_linear: | |
x = rearrange( | |
x, '(b f) c h w -> b (h w) f c', f=self.frames).contiguous() | |
x = self.proj_in(x) | |
if self.only_self_att: | |
x = rearrange(x, 'bhw c f -> bhw f c').contiguous() | |
for i, block in enumerate(self.transformer_blocks): | |
x = block(x) | |
x = rearrange(x, '(b hw) f c -> b hw f c', b=b).contiguous() | |
else: | |
x = rearrange(x, '(b hw) c f -> b hw f c', b=b).contiguous() | |
for i, block in enumerate(self.transformer_blocks): | |
context[i] = rearrange( | |
context[i], '(b f) l con -> b f l con', | |
f=self.frames).contiguous() | |
# calculate each batch one by one (since number in shape could not greater then 65,535 for some package) | |
for j in range(b): | |
context_i_j = repeat( | |
context[i][j], | |
'f l con -> (f r) l con', | |
r=(h * w) // self.frames, | |
f=self.frames).contiguous() | |
x[j] = block(x[j], context=context_i_j) | |
if self.use_linear: | |
x = self.proj_out(x) | |
x = rearrange(x, 'b (h w) f c -> b f c h w', h=h, w=w).contiguous() | |
if not self.use_linear: | |
x = rearrange(x, 'b hw f c -> (b hw) c f').contiguous() | |
x = self.proj_out(x) | |
x = rearrange( | |
x, '(b h w) c f -> b c f h w', b=b, h=h, w=w).contiguous() | |
if self.multiply_zero: | |
x = 0.0 * x + x_in | |
else: | |
x = x + x_in | |
return x | |
class BasicTransformerBlock(nn.Module): | |
def __init__(self, | |
dim, | |
n_heads, | |
d_head, | |
dropout=0., | |
context_dim=None, | |
gated_ff=True, | |
checkpoint=True, | |
disable_self_attn=False): | |
super().__init__() | |
attn_cls = CrossAttention | |
self.disable_self_attn = disable_self_attn | |
self.attn1 = attn_cls( | |
query_dim=dim, | |
heads=n_heads, | |
dim_head=d_head, | |
dropout=dropout, | |
context_dim=context_dim if self.disable_self_attn else | |
None) # is a self-attention if not self.disable_self_attn | |
self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff) | |
self.attn2 = attn_cls( | |
query_dim=dim, | |
context_dim=context_dim, | |
heads=n_heads, | |
dim_head=d_head, | |
dropout=dropout) # is self-attn if context is none | |
self.norm1 = nn.LayerNorm(dim) | |
self.norm2 = nn.LayerNorm(dim) | |
self.norm3 = nn.LayerNorm(dim) | |
self.checkpoint = checkpoint | |
def forward(self, x, context=None): | |
x = self.attn1( | |
self.norm1(x), | |
context=context if self.disable_self_attn else None) + x | |
x = self.attn2(self.norm2(x), context=context) + x | |
x = self.ff(self.norm3(x)) + x | |
return x | |
# feedforward | |
class GEGLU(nn.Module): | |
def __init__(self, dim_in, dim_out): | |
super().__init__() | |
self.proj = nn.Linear(dim_in, dim_out * 2) | |
def forward(self, x): | |
x, gate = self.proj(x).chunk(2, dim=-1) | |
return x * F.gelu(gate) | |
def zero_module(module): | |
""" | |
Zero out the parameters of a module and return it. | |
""" | |
for p in module.parameters(): | |
p.detach().zero_() | |
return module | |
class FeedForward(nn.Module): | |
def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.): | |
super().__init__() | |
inner_dim = int(dim * mult) | |
dim_out = default(dim_out, dim) | |
project_in = nn.Sequential(nn.Linear( | |
dim, inner_dim), nn.GELU()) if not glu else GEGLU(dim, inner_dim) | |
self.net = nn.Sequential(project_in, nn.Dropout(dropout), | |
nn.Linear(inner_dim, dim_out)) | |
def forward(self, x): | |
return self.net(x) | |
class Upsample(nn.Module): | |
""" | |
An upsampling layer with an optional convolution. | |
:param channels: channels in the inputs and outputs. | |
:param use_conv: a bool determining if a convolution is applied. | |
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then | |
upsampling occurs in the inner-two dimensions. | |
""" | |
def __init__(self, | |
channels, | |
use_conv, | |
dims=2, | |
out_channels=None, | |
padding=1): | |
super().__init__() | |
self.channels = channels | |
self.out_channels = out_channels or channels | |
self.use_conv = use_conv | |
self.dims = dims | |
if use_conv: | |
self.conv = nn.Conv2d( | |
self.channels, self.out_channels, 3, padding=padding) | |
def forward(self, x): | |
assert x.shape[1] == self.channels | |
if self.dims == 3: | |
x = F.interpolate( | |
x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), | |
mode='nearest') | |
else: | |
x = F.interpolate(x, scale_factor=2, mode='nearest') | |
if self.use_conv: | |
x = self.conv(x) | |
return x | |
class ResBlock(nn.Module): | |
""" | |
A residual block that can optionally change the number of channels. | |
:param channels: the number of input channels. | |
:param emb_channels: the number of timestep embedding channels. | |
:param dropout: the rate of dropout. | |
:param out_channels: if specified, the number of out channels. | |
:param use_conv: if True and out_channels is specified, use a spatial | |
convolution instead of a smaller 1x1 convolution to change the | |
channels in the skip connection. | |
:param dims: determines if the signal is 1D, 2D, or 3D. | |
:param up: if True, use this block for upsampling. | |
:param down: if True, use this block for downsampling. | |
:param use_temporal_conv: if True, use the temporal convolution. | |
:param use_image_dataset: if True, the temporal parameters will not be optimized. | |
""" | |
def __init__( | |
self, | |
channels, | |
emb_channels, | |
dropout, | |
out_channels=None, | |
use_conv=False, | |
use_scale_shift_norm=False, | |
dims=2, | |
up=False, | |
down=False, | |
use_temporal_conv=True, | |
use_image_dataset=False, | |
): | |
super().__init__() | |
self.channels = channels | |
self.emb_channels = emb_channels | |
self.dropout = dropout | |
self.out_channels = out_channels or channels | |
self.use_conv = use_conv | |
self.use_scale_shift_norm = use_scale_shift_norm | |
self.use_temporal_conv = use_temporal_conv | |
self.in_layers = nn.Sequential( | |
nn.GroupNorm(32, channels), | |
nn.SiLU(), | |
nn.Conv2d(channels, self.out_channels, 3, padding=1), | |
) | |
self.updown = up or down | |
if up: | |
self.h_upd = Upsample(channels, False, dims) | |
self.x_upd = Upsample(channels, False, dims) | |
elif down: | |
self.h_upd = Downsample(channels, False, dims) | |
self.x_upd = Downsample(channels, False, dims) | |
else: | |
self.h_upd = self.x_upd = nn.Identity() | |
self.emb_layers = nn.Sequential( | |
nn.SiLU(), | |
nn.Linear( | |
emb_channels, | |
2 * self.out_channels | |
if use_scale_shift_norm else self.out_channels, | |
), | |
) | |
self.out_layers = nn.Sequential( | |
nn.GroupNorm(32, self.out_channels), | |
nn.SiLU(), | |
nn.Dropout(p=dropout), | |
zero_module( | |
nn.Conv2d(self.out_channels, self.out_channels, 3, padding=1)), | |
) | |
if self.out_channels == channels: | |
self.skip_connection = nn.Identity() | |
elif use_conv: | |
self.skip_connection = conv_nd( | |
dims, channels, self.out_channels, 3, padding=1) | |
else: | |
self.skip_connection = nn.Conv2d(channels, self.out_channels, 1) | |
if self.use_temporal_conv: | |
self.temopral_conv = TemporalConvBlock_v2( | |
self.out_channels, | |
self.out_channels, | |
dropout=0.1, | |
use_image_dataset=use_image_dataset) | |
def forward(self, x, emb, batch_size): | |
""" | |
Apply the block to a Tensor, conditioned on a timestep embedding. | |
:param x: an [N x C x ...] Tensor of features. | |
:param emb: an [N x emb_channels] Tensor of timestep embeddings. | |
:return: an [N x C x ...] Tensor of outputs. | |
""" | |
return self._forward(x, emb, batch_size) | |
def _forward(self, x, emb, batch_size): | |
if self.updown: | |
in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1] | |
h = in_rest(x) | |
h = self.h_upd(h) | |
x = self.x_upd(x) | |
h = in_conv(h) | |
else: | |
h = self.in_layers(x) | |
emb_out = self.emb_layers(emb).type(h.dtype) | |
while len(emb_out.shape) < len(h.shape): | |
emb_out = emb_out[..., None] | |
if self.use_scale_shift_norm: | |
out_norm, out_rest = self.out_layers[0], self.out_layers[1:] | |
scale, shift = torch.chunk(emb_out, 2, dim=1) | |
h = out_norm(h) * (1 + scale) + shift | |
h = out_rest(h) | |
else: | |
h = h + emb_out | |
h = self.out_layers(h) | |
h = self.skip_connection(x) + h | |
if self.use_temporal_conv: | |
h = rearrange(h, '(b f) c h w -> b c f h w', b=batch_size) | |
h = self.temopral_conv(h) | |
h = rearrange(h, 'b c f h w -> (b f) c h w') | |
return h | |
class Downsample(nn.Module): | |
""" | |
A downsampling layer with an optional convolution. | |
:param channels: channels in the inputs and outputs. | |
:param use_conv: a bool determining if a convolution is applied. | |
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then | |
downsampling occurs in the inner-two dimensions. | |
""" | |
def __init__(self, | |
channels, | |
use_conv, | |
dims=2, | |
out_channels=None, | |
padding=1): | |
super().__init__() | |
self.channels = channels | |
self.out_channels = out_channels or channels | |
self.use_conv = use_conv | |
self.dims = dims | |
stride = 2 if dims != 3 else (1, 2, 2) | |
if self.use_conv: | |
self.op = nn.Conv2d( | |
self.channels, | |
self.out_channels, | |
3, | |
stride=stride, | |
padding=padding) | |
else: | |
assert self.channels == self.out_channels | |
self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride) | |
def forward(self, x): | |
assert x.shape[1] == self.channels | |
return self.op(x) | |
class Resample(nn.Module): | |
def __init__(self, in_dim, out_dim, mode): | |
assert mode in ['none', 'upsample', 'downsample'] | |
super(Resample, self).__init__() | |
self.in_dim = in_dim | |
self.out_dim = out_dim | |
self.mode = mode | |
def forward(self, x, reference=None): | |
if self.mode == 'upsample': | |
assert reference is not None | |
x = F.interpolate(x, size=reference.shape[-2:], mode='nearest') | |
elif self.mode == 'downsample': | |
x = F.adaptive_avg_pool2d( | |
x, output_size=tuple(u // 2 for u in x.shape[-2:])) | |
return x | |
class ResidualBlock(nn.Module): | |
def __init__(self, | |
in_dim, | |
embed_dim, | |
out_dim, | |
use_scale_shift_norm=True, | |
mode='none', | |
dropout=0.0): | |
super(ResidualBlock, self).__init__() | |
self.in_dim = in_dim | |
self.embed_dim = embed_dim | |
self.out_dim = out_dim | |
self.use_scale_shift_norm = use_scale_shift_norm | |
self.mode = mode | |
# layers | |
self.layer1 = nn.Sequential( | |
nn.GroupNorm(32, in_dim), nn.SiLU(), | |
nn.Conv2d(in_dim, out_dim, 3, padding=1)) | |
self.resample = Resample(in_dim, in_dim, mode) | |
self.embedding = nn.Sequential( | |
nn.SiLU(), | |
nn.Linear(embed_dim, | |
out_dim * 2 if use_scale_shift_norm else out_dim)) | |
self.layer2 = nn.Sequential( | |
nn.GroupNorm(32, out_dim), nn.SiLU(), nn.Dropout(dropout), | |
nn.Conv2d(out_dim, out_dim, 3, padding=1)) | |
self.shortcut = nn.Identity() if in_dim == out_dim else nn.Conv2d( | |
in_dim, out_dim, 1) | |
# zero out the last layer params | |
nn.init.zeros_(self.layer2[-1].weight) | |
def forward(self, x, e, reference=None): | |
identity = self.resample(x, reference) | |
x = self.layer1[-1](self.resample(self.layer1[:-1](x), reference)) | |
e = self.embedding(e).unsqueeze(-1).unsqueeze(-1).type(x.dtype) | |
if self.use_scale_shift_norm: | |
scale, shift = e.chunk(2, dim=1) | |
x = self.layer2[0](x) * (1 + scale) + shift | |
x = self.layer2[1:](x) | |
else: | |
x = x + e | |
x = self.layer2(x) | |
x = x + self.shortcut(identity) | |
return x | |
class AttentionBlock(nn.Module): | |
def __init__(self, dim, context_dim=None, num_heads=None, head_dim=None): | |
# consider head_dim first, then num_heads | |
num_heads = dim // head_dim if head_dim else num_heads | |
head_dim = dim // num_heads | |
assert num_heads * head_dim == dim | |
super(AttentionBlock, self).__init__() | |
self.dim = dim | |
self.context_dim = context_dim | |
self.num_heads = num_heads | |
self.head_dim = head_dim | |
self.scale = math.pow(head_dim, -0.25) | |
# layers | |
self.norm = nn.GroupNorm(32, dim) | |
self.to_qkv = nn.Conv2d(dim, dim * 3, 1) | |
if context_dim is not None: | |
self.context_kv = nn.Linear(context_dim, dim * 2) | |
self.proj = nn.Conv2d(dim, dim, 1) | |
# zero out the last layer params | |
nn.init.zeros_(self.proj.weight) | |
def forward(self, x, context=None): | |
r"""x: [B, C, H, W]. | |
context: [B, L, C] or None. | |
""" | |
identity = x | |
b, c, h, w, n, d = *x.size(), self.num_heads, self.head_dim | |
# compute query, key, value | |
x = self.norm(x) | |
q, k, v = self.to_qkv(x).view(b, n * 3, d, h * w).chunk(3, dim=1) | |
if context is not None: | |
ck, cv = self.context_kv(context).reshape(b, -1, n * 2, | |
d).permute(0, 2, 3, | |
1).chunk( | |
2, dim=1) | |
k = torch.cat([ck, k], dim=-1) | |
v = torch.cat([cv, v], dim=-1) | |
# compute attention | |
attn = torch.matmul(q.transpose(-1, -2) * self.scale, k * self.scale) | |
attn = F.softmax(attn, dim=-1) | |
# gather context | |
x = torch.matmul(v, attn.transpose(-1, -2)) | |
x = x.reshape(b, c, h, w) | |
# output | |
x = self.proj(x) | |
return x + identity | |
class TemporalConvBlock_v2(nn.Module): | |
def __init__(self, | |
in_dim, | |
out_dim=None, | |
dropout=0.0, | |
use_image_dataset=False): | |
super(TemporalConvBlock_v2, self).__init__() | |
if out_dim is None: | |
out_dim = in_dim # int(1.5*in_dim) | |
self.in_dim = in_dim | |
self.out_dim = out_dim | |
self.use_image_dataset = use_image_dataset | |
# conv layers | |
self.conv1 = nn.Sequential( | |
nn.GroupNorm(32, in_dim), nn.SiLU(), | |
nn.Conv3d(in_dim, out_dim, (3, 1, 1), padding=(1, 0, 0))) | |
self.conv2 = nn.Sequential( | |
nn.GroupNorm(32, out_dim), nn.SiLU(), nn.Dropout(dropout), | |
nn.Conv3d(out_dim, in_dim, (3, 1, 1), padding=(1, 0, 0))) | |
self.conv3 = nn.Sequential( | |
nn.GroupNorm(32, out_dim), nn.SiLU(), nn.Dropout(dropout), | |
nn.Conv3d(out_dim, in_dim, (3, 1, 1), padding=(1, 0, 0))) | |
self.conv4 = nn.Sequential( | |
nn.GroupNorm(32, out_dim), nn.SiLU(), nn.Dropout(dropout), | |
nn.Conv3d(out_dim, in_dim, (3, 1, 1), padding=(1, 0, 0))) | |
# zero out the last layer params,so the conv block is identity | |
nn.init.zeros_(self.conv4[-1].weight) | |
nn.init.zeros_(self.conv4[-1].bias) | |
def forward(self, x): | |
identity = x | |
x = self.conv1(x) | |
x = self.conv2(x) | |
x = self.conv3(x) | |
x = self.conv4(x) | |
if self.use_image_dataset: | |
x = identity + 0.0 * x | |
else: | |
x = identity + x | |
return x | |
def prob_mask_like(shape, prob, device): | |
if prob == 1: | |
return torch.ones(shape, device=device, dtype=torch.bool) | |
elif prob == 0: | |
return torch.zeros(shape, device=device, dtype=torch.bool) | |
else: | |
mask = torch.zeros(shape, device=device).float().uniform_(0, 1) < prob | |
# aviod mask all, which will cause find_unused_parameters error | |
if mask.all(): | |
mask[0] = False | |
return mask | |
def conv_nd(dims, *args, **kwargs): | |
""" | |
Create a 1D, 2D, or 3D convolution module. | |
""" | |
if dims == 1: | |
return nn.Conv1d(*args, **kwargs) | |
elif dims == 2: | |
return nn.Conv2d(*args, **kwargs) | |
elif dims == 3: | |
return nn.Conv3d(*args, **kwargs) | |
raise ValueError(f'unsupported dimensions: {dims}') | |
def avg_pool_nd(dims, *args, **kwargs): | |
""" | |
Create a 1D, 2D, or 3D average pooling module. | |
""" | |
if dims == 1: | |
return nn.AvgPool1d(*args, **kwargs) | |
elif dims == 2: | |
return nn.AvgPool2d(*args, **kwargs) | |
elif dims == 3: | |
return nn.AvgPool3d(*args, **kwargs) | |
raise ValueError(f'unsupported dimensions: {dims}') |