RelightVid / app_bf1.py
aleafy's picture
modify
5e5f393
import os
import gradio as gr
import numpy as np
from enum import Enum
import db_examples
import cv2
from demo_utils1 import *
from misc_utils.train_utils import unit_test_create_model
from misc_utils.image_utils import save_tensor_to_gif, save_tensor_to_images
import os
from PIL import Image
import torch
import torchvision
from torchvision import transforms
from einops import rearrange
import imageio
import time
from torchvision.transforms import functional as F
from torch.hub import download_url_to_file
import os
import spaces
# 推理设置
from pl_trainer.inference.inference import InferenceIP2PVideo
from tqdm import tqdm
# if not os.path.exists(filename):
# original_path = os.getcwd()
# base_path = './models'
# os.makedirs(base_path, exist_ok=True)
# # 直接在代码中写入 Token(注意安全风险)
# GIT_TOKEN = "955b8ea91095840b76fe38b90a088c200d4c813c"
# repo_url = f"https://YeFang:{GIT_TOKEN}@code.openxlab.org.cn/YeFang/RIV_models.git"
# try:
# if os.system(f'git clone {repo_url} {base_path}') != 0:
# raise RuntimeError("Git 克隆失败")
# os.chdir(base_path)
# if os.system('git lfs pull') != 0:
# raise RuntimeError("Git LFS 拉取失败")
# finally:
# os.chdir(original_path)
def tensor_to_pil_image(x):
"""
将 4D PyTorch 张量转换为 PIL 图像。
"""
x = x.float() # 确保张量类型为 float
grid_img = torchvision.utils.make_grid(x, nrow=4).permute(1, 2, 0).detach().cpu().numpy()
grid_img = (grid_img * 255).clip(0, 255).astype("uint8") # 将 [0, 1] 范围转换为 [0, 255]
return Image.fromarray(grid_img)
def frame_to_batch(x):
"""
将帧维度转换为批次维度。
"""
return rearrange(x, 'b f c h w -> (b f) c h w')
def clip_image(x, min=0., max=1.):
"""
将图像张量裁剪到指定的最小和最大值。
"""
return torch.clamp(x, min=min, max=max)
def unnormalize(x):
"""
将张量范围从 [-1, 1] 转换到 [0, 1]。
"""
return (x + 1) / 2
# 读取图像文件
def read_images_from_directory(directory, num_frames=16):
images = []
for i in range(num_frames):
img_path = os.path.join(directory, f'{i:04d}.png')
img = imageio.imread(img_path)
images.append(torch.tensor(img).permute(2, 0, 1)) # Convert to Tensor (C, H, W)
return images
def load_and_process_images(folder_path):
"""
读取文件夹中的所有图片,将它们转换为 [-1, 1] 范围的张量并返回一个 4D 张量。
"""
processed_images = []
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Lambda(lambda x: x * 2 - 1) # 将 [0, 1] 转换为 [-1, 1]
])
for filename in sorted(os.listdir(folder_path)):
if filename.endswith(".png"):
img_path = os.path.join(folder_path, filename)
image = Image.open(img_path).convert("RGB")
processed_image = transform(image)
processed_images.append(processed_image)
return torch.stack(processed_images) # 返回 4D 张量
def load_and_process_video(video_path, num_frames=16, crop_size=512):
"""
读取视频文件中的前 num_frames 帧,将每一帧转换为 [-1, 1] 范围的张量,
并进行中心裁剪至 crop_size x crop_size,返回一个 4D 张量。
"""
processed_frames = []
transform = transforms.Compose([
transforms.CenterCrop(crop_size), # 中心裁剪
transforms.ToTensor(),
transforms.Lambda(lambda x: x * 2 - 1) # 将 [0, 1] 转换为 [-1, 1]
])
# 使用 OpenCV 读取视频
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
raise ValueError(f"无法打开视频文件: {video_path}")
frame_count = 0
while frame_count < num_frames:
ret, frame = cap.read()
if not ret:
break # 视频帧读取完毕或视频帧不足
# 转换为 RGB 格式
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
image = Image.fromarray(frame)
# 应用转换
processed_frame = transform(image)
processed_frames.append(processed_frame)
frame_count += 1
cap.release() # 释放视频资源
if len(processed_frames) < num_frames:
raise ValueError(f"视频帧不足 {num_frames} 帧,仅找到 {len(processed_frames)} 帧。")
return torch.stack(processed_frames) # 返回 4D 张量 (帧数, 通道数, 高度, 宽度)
def clear_cache(output_path):
if os.path.exists(output_path):
os.remove(output_path)
return None
#! 加载模型
# 配置路径和加载模型
config_path = 'configs/instruct_v2v_ic_gradio.yaml'
diffusion_model = unit_test_create_model(config_path)
diffusion_model = diffusion_model.to('cuda')
# 加载模型检查点
# ckpt_path = 'models/relvid_mm_sd15_fbc_unet.pth' #! change
# ckpt_path = 'tmp/pytorch_model.bin'
# 下载文件
os.makedirs('models', exist_ok=True)
model_path = "models/relvid_mm_sd15_fbc_unet.pth"
if not os.path.exists(model_path):
download_url_to_file(url='https://huggingface.co/aleafy/RelightVid/resolve/main/relvid_mm_sd15_fbc_unet.pth', dst=model_path)
ckpt = torch.load(model_path, map_location='cpu')
diffusion_model.load_state_dict(ckpt, strict=False)
# import pdb; pdb.set_trace()
# 更改全局临时目录
new_tmp_dir = "./demo/gradio_bg"
os.makedirs(new_tmp_dir, exist_ok=True)
# import pdb; pdb.set_trace()
def save_video_from_frames(image_pred, save_pth, fps=8):
"""
将 image_pred 中的帧保存为视频文件。
参数:
- image_pred: Tensor,形状为 (1, 16, 3, 512, 512)
- save_pth: 保存视频的路径,例如 "output_video.mp4"
- fps: 视频的帧率
"""
# 视频参数
num_frames = image_pred.shape[1]
frame_height, frame_width = 512, 512 # 目标尺寸
fourcc = cv2.VideoWriter_fourcc(*'mp4v') # 使用 mp4 编码格式
# 创建 VideoWriter 对象
out = cv2.VideoWriter(save_pth, fourcc, fps, (frame_width, frame_height))
for i in range(num_frames):
# 反归一化 + 转换为 0-255 范围
pred_frame = clip_image(unnormalize(image_pred[0][i].unsqueeze(0))) * 255
pred_frame_resized = pred_frame.squeeze(0).detach().cpu() # (3, 512, 512)
pred_frame_resized = pred_frame_resized.permute(1, 2, 0).numpy().astype("uint8") # (512, 512, 3)
# Resize 到 256x256
pred_frame_resized = cv2.resize(pred_frame_resized, (frame_width, frame_height))
# 将 RGB 转为 BGR(因为 OpenCV 使用 BGR 格式)
pred_frame_bgr = cv2.cvtColor(pred_frame_resized, cv2.COLOR_RGB2BGR)
# 写入帧到视频
out.write(pred_frame_bgr)
# 释放 VideoWriter 资源
out.release()
print(f"视频已保存至 {save_pth}")
inf_pipe = InferenceIP2PVideo(
diffusion_model.unet,
scheduler='ddpm',
num_ddim_steps=20
)
def process_example(*args):
v_index = args[0]
select_e = db_examples.background_conditioned_examples[int(v_index)-1]
input_fg_path = select_e[1]
input_bg_path = select_e[2]
result_video_path = select_e[-1]
# input_fg_img = args[1] # 第 0 个参数
# input_bg_img = args[2] # 第 1 个参数
# result_video_img = args[-1] # 最后一个参数
input_fg = input_fg_path.replace("frames/0000.png", "cropped_video.mp4")
input_bg = input_bg_path.replace("frames/0000.png", "cropped_video.mp4")
result_video = result_video_path.replace(".png", ".mp4")
return input_fg, input_bg, result_video
# 伪函数占位(生成空白视频)
@spaces.GPU
def dummy_process(input_fg, input_bg, prompt):
# import pdb; pdb.set_trace()
diffusion_model.to(torch.float16)
fg_tensor = load_and_process_video(input_fg).cuda().unsqueeze(0).to(dtype=torch.float16)
bg_tensor = load_and_process_video(input_bg).cuda().unsqueeze(0).to(dtype=torch.float16) # (1, 16, 4, 64, 64)
cond_fg_tensor = diffusion_model.encode_image_to_latent(fg_tensor) # (1, 16, 4, 64, 64)
cond_bg_tensor = diffusion_model.encode_image_to_latent(bg_tensor)
cond_tensor = torch.cat((cond_fg_tensor, cond_bg_tensor), dim=2)
# 初始化潜变量
init_latent = torch.randn_like(cond_fg_tensor)
# EDIT_PROMPT = 'change the background'
EDIT_PROMPT = prompt
VIDEO_CFG = 1.2
TEXT_CFG = 7.5
text_cond = diffusion_model.encode_text([EDIT_PROMPT]) # (1, 77, 768)
text_uncond = diffusion_model.encode_text([''])
# to float16
print('------------to float 16----------------')
init_latent, text_cond, text_uncond, cond_tensor = (
init_latent.to(dtype=torch.float16),
text_cond.to(dtype=torch.float16),
text_uncond.to(dtype=torch.float16),
cond_tensor.to(dtype=torch.float16)
)
inf_pipe.unet.to(torch.float16)
latent_pred = inf_pipe(
latent=init_latent,
text_cond=text_cond,
text_uncond=text_uncond,
img_cond=cond_tensor,
text_cfg=TEXT_CFG,
img_cfg=VIDEO_CFG,
)['latent']
image_pred = diffusion_model.decode_latent_to_image(latent_pred) # (1,16,3,512,512)
output_path = os.path.join(new_tmp_dir, f"output_{int(time.time())}.mp4")
# clear_cache(output_path)
save_video_from_frames(image_pred, output_path)
# import pdb; pdb.set_trace()
# fps = 8
# frames = []
# for i in range(16):
# pred_frame = clip_image(unnormalize(image_pred[0][i].unsqueeze(0))) * 255
# pred_frame_resized = pred_frame.squeeze(0).detach().cpu() #(3,512,512)
# pred_frame_resized = pred_frame_resized.permute(1, 2, 0).detach().cpu().numpy().astype("uint8") #(512,512,3) np
# Image.fromarray(pred_frame_resized).save(save_pth)
# # 生成一个简单的黑色视频作为示例
# output_path = os.path.join(new_tmp_dir, "output.mp4")
# fourcc = cv2.VideoWriter_fourcc(*'mp4v')
# out = cv2.VideoWriter(output_path, fourcc, 20.0, (512, 512))
# for _ in range(60): # 生成 3 秒的视频(20fps)
# frame = np.zeros((512, 512, 3), dtype=np.uint8)
# out.write(frame)
# out.release()
torch.cuda.empty_cache()
return output_path
# 枚举类用于背景选择
class BGSource(Enum):
UPLOAD = "Use Background Video"
UPLOAD_FLIP = "Use Flipped Background Video"
UPLOAD_REVERSE = "Use Reversed Background Video"
# Quick prompts 示例
# quick_prompts = [
# 'beautiful woman, fantasy setting',
# 'beautiful woman, neon dynamic lighting',
# 'man in suit, tunel lighting',
# 'animated mouse, aesthetic lighting',
# 'robot warrior, a sunset background',
# 'yellow cat, reflective wet beach',
# 'camera, dock, calm sunset',
# 'astronaut, dim lighting',
# 'astronaut, colorful balloons',
# 'astronaut, desert landscape'
# ]
# quick_prompts = [
# 'beautiful woman',
# 'handsome man',
# 'beautiful woman, cinematic lighting',
# 'handsome man, cinematic lighting',
# 'beautiful woman, natural lighting',
# 'handsome man, natural lighting',
# 'beautiful woman, neo punk lighting, cyberpunk',
# 'handsome man, neo punk lighting, cyberpunk',
# ]
quick_prompts = [
'beautiful woman',
'handsome man',
# 'beautiful woman, cinematic lighting',
'handsome man, cinematic lighting',
'beautiful woman, natural lighting',
'handsome man, natural lighting',
'beautiful woman, warm lighting',
'handsome man, soft lighting',
'change the background lighting',
]
quick_prompts = [[x] for x in quick_prompts]
# css = """
# #foreground-gallery {
# width: 700 !important; /* 限制最大宽度 */
# max-width: 700px !important; /* 避免它自动变宽 */
# flex: none !important; /* 让它不自动扩展 */
# }
# """
# css = """
# #prompt-box, #bg-source, #quick-list, #relight-btn {
# width: 750px !important;
# }
# """
# Gradio UI 结构
block = gr.Blocks().queue()
with block:
with gr.Row():
# gr.Markdown("## RelightVid (Relighting with Foreground and Background Video Condition)")
gr.Markdown("# 💡RelightVid \n### Relighting with Foreground and Background Video Condition")
with gr.Row():
with gr.Column():
with gr.Row():
input_fg = gr.Video(label="Foreground Video", height=380, width=420, visible=True)
input_bg = gr.Video(label="Background Video", height=380, width=420, visible=True)
segment_button = gr.Button(value="Video Segmentation")
with gr.Accordion("Segmentation Options", open=False):
# 如果用户不使用 point_prompt,而是直接提供坐标,则使用 x, y
with gr.Row():
x_coord = gr.Slider(label="X Coordinate (Point Prompt Ratio)", minimum=0.0, maximum=1.0, value=0.5, step=0.01)
y_coord = gr.Slider(label="Y Coordinate (Point Prompt Ratio)", minimum=0.0, maximum=1.0, value=0.5, step=0.01)
fg_gallery = gr.Gallery(height=150, object_fit='contain', label='Foreground Quick List', value=db_examples.fg_samples, columns=5, allow_preview=False)
bg_gallery = gr.Gallery(height=450, object_fit='contain', label='Background Quick List', value=db_examples.bg_samples, columns=5, allow_preview=False)
with gr.Group():
# with gr.Row():
# num_samples = gr.Slider(label="Videos", minimum=1, maximum=12, value=1, step=1)
# seed = gr.Number(label="Seed", value=12345, precision=0)
with gr.Row():
video_width = gr.Slider(label="Video Width", minimum=256, maximum=1024, value=512, step=64, visible=False)
video_height = gr.Slider(label="Video Height", minimum=256, maximum=1024, value=512, step=64, visible=False)
# with gr.Accordion("Advanced options", open=False):
# steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=20, step=1)
# cfg = gr.Slider(label="CFG Scale", minimum=1.0, maximum=32.0, value=7.0, step=0.01)
# highres_scale = gr.Slider(label="Highres Scale", minimum=1.0, maximum=3.0, value=1.5, step=0.01)
# highres_denoise = gr.Slider(label="Highres Denoise", minimum=0.1, maximum=0.9, value=0.5, step=0.01)
# a_prompt = gr.Textbox(label="Added Prompt", value='best quality')
# n_prompt = gr.Textbox(label="Negative Prompt", value='lowres, bad anatomy, bad hands, cropped, worst quality')
# normal_button = gr.Button(value="Compute Normal (4x Slower)")
with gr.Column():
result_video = gr.Video(label='Output Video', height=750, visible=True)
prompt = gr.Textbox(label="Prompt")
bg_source = gr.Radio(choices=[e.value for e in BGSource],
value=BGSource.UPLOAD.value,
label="Background Source",
type='value')
example_prompts = gr.Dataset(samples=quick_prompts, label='Prompt Quick List', components=[prompt])
relight_button = gr.Button(value="Relight")
# prompt = gr.Textbox(label="Prompt")
# bg_source = gr.Radio(choices=[e.value for e in BGSource],
# value=BGSource.UPLOAD.value,
# label="Background Source", type='value')
# example_prompts = gr.Dataset(samples=quick_prompts, label='Prompt Quick List', components=[prompt])
# relight_button = gr.Button(value="Relight")
# fg_gallery = gr.Gallery(witdth=400, object_fit='contain', label='Foreground Quick List', value=db_examples.bg_samples, columns=4, allow_preview=False)
# fg_gallery = gr.Gallery(
# height=380,
# object_fit='contain',
# label='Foreground Quick List',
# value=db_examples.fg_samples,
# columns=4,
# allow_preview=False,
# elem_id="foreground-gallery" # 👈 添加 elem_id
# )
# 输入列表
# ips = [input_fg, input_bg, prompt, video_width, video_height, num_samples, seed, steps, a_prompt, n_prompt, cfg, highres_scale, highres_denoise, bg_source]
ips = [input_fg, input_bg, prompt]
# 按钮绑定处理函数
# relight_button.click(fn=lambda: None, inputs=[], outputs=[result_video])
relight_button.click(fn=dummy_process, inputs=ips, outputs=[result_video])
# normal_button.click(fn=dummy_process, inputs=ips, outputs=[result_video])
# 背景库选择
def bg_gallery_selected(gal, evt: gr.SelectData):
# import pdb; pdb.set_trace()
# img_path = gal[evt.index][0]
img_path = db_examples.bg_samples[evt.index]
video_path = img_path.replace('frames/0000.png', 'cropped_video.mp4')
return video_path
bg_gallery.select(bg_gallery_selected, inputs=bg_gallery, outputs=input_bg)
def fg_gallery_selected(gal, evt: gr.SelectData):
# import pdb; pdb.set_trace()
# img_path = gal[evt.index][0]
img_path = db_examples.fg_samples[evt.index]
video_path = img_path.replace('frames/0000.png', 'cropped_video.mp4')
return video_path
fg_gallery.select(fg_gallery_selected, inputs=fg_gallery, outputs=input_fg)
input_fg_img = gr.Image(label="Foreground Video", visible=False)
input_bg_img = gr.Image(label="Background Video", visible=False)
result_video_img = gr.Image(label="Output Video", visible=False)
v_index = gr.Textbox(label="ID", visible=False)
example_prompts.click(lambda x: x[0], inputs=example_prompts, outputs=prompt, show_progress=False, queue=False)
# 示例
# dummy_video_for_outputs = gr.Video(visible=False, label='Result')
gr.Examples(
# fn=lambda *args: args[-1],
fn=process_example,
examples=db_examples.background_conditioned_examples,
# inputs=[v_index, input_fg_img, input_bg_img, prompt, bg_source, video_width, video_height, result_video_img],
inputs=[v_index, input_fg_img, input_bg_img, prompt, bg_source, result_video_img],
outputs=[input_fg, input_bg, result_video],
run_on_click=True, examples_per_page=1024
)
# 启动 Gradio 应用
# block.launch(server_name='0.0.0.0', server_port=10002, share=True)
block.launch()