Spaces:
Running
on
Zero
Running
on
Zero
import spaces | |
import gradio as gr | |
from transformers import pipeline, GPT2TokenizerFast | |
#model_id = "alakxender/dv-wiki-gpt2" | |
model_id = "alakxender/dv-articles-gpt2" | |
tokenizer = GPT2TokenizerFast.from_pretrained(model_id, model_max_length=128) | |
generator = pipeline("text-generation", model=model_id, tokenizer=tokenizer, pad_token_id=tokenizer.pad_token_id, eos_token_id=tokenizer.eos_token_id) | |
def generate_text(prompt, max_length, temperature): | |
try: | |
generated = generator( | |
prompt, | |
max_length=max_length, | |
#num_beams=10, | |
#no_repeat_ngram_size=2, | |
temperature=temperature, | |
do_sample=True, | |
repetition_penalty=1.4 | |
) | |
return generated[0]['generated_text'] | |
except Exception as e: | |
return f"Something went wrong, try again. Error: {str(e)}" | |
styles = """ | |
.thaana textarea { | |
font-size: 18px !important; | |
font-family: 'MV_Faseyha', 'Faruma', 'A_Faruma', 'Noto Sans Thaana', 'MV Boli'; | |
line-height: 1.8 !important; | |
} | |
""" | |
def create_interface(): | |
with gr.Blocks(css=styles) as demo: | |
gr.Markdown("# Dhivehi Text Generator (GPT-2, Wiki)") | |
gr.Markdown( | |
"This is a GPT-2 model trained from Dhivehi text data from wikipedia\n" | |
"Enter some text and generate a new text, adjust the parameters to generate text." | |
) | |
gr.Markdown(""" | |
**Parameters:** | |
- **Temperature**: Controls the creativity of the output. | |
- Lower values (0.2) = More focused and predictable text | |
- Higher values (0.8) = More diverse and creative text | |
- **Maximum Length**: Controls the length of generated text. | |
- Higher values generate longer, more detailed results | |
- Note: Longer texts take more time to generate | |
""") | |
with gr.Row(): | |
input_temperature = gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.7, | |
step=0.1, | |
label="Temperature", | |
) | |
input_max_length = gr.Slider( | |
minimum=10, | |
maximum=128, | |
value=60, | |
step=1, | |
label="Maximum Length", | |
) | |
with gr.Row(): | |
with gr.Column(scale=1): | |
input_prompt = gr.Textbox( | |
label="Enter dhivehi text prompt", | |
placeholder="ދިވެހިން", | |
lines=5, | |
rtl=True, | |
elem_classes="thaana" | |
) | |
with gr.Column(scale=1): | |
output_text = gr.Textbox( | |
label="Generated Text", | |
lines=5, | |
interactive=True, | |
rtl=True, | |
elem_classes="thaana" | |
) | |
with gr.Row(): | |
generate_btn = gr.Button("Generate", variant="primary") | |
clear_btn = gr.ClearButton([input_prompt, output_text]) | |
generate_btn.click( | |
fn=generate_text, | |
inputs=[input_prompt, input_max_length, input_temperature], | |
outputs=output_text | |
) | |
gr.Examples( | |
examples=[ | |
["ދިވެހިރާއްޖެ"], | |
["އެމެރިކާ އިންތިޚާބު"], | |
["ސަލާމް"], | |
["ދުނިޔޭގެ ސިއްޙަތު ޖަމްޢިއްޔާ"], | |
["ޤަދީމީ ސަގާފަތް"], | |
["ޑިމޮކްރަސީ"] | |
], | |
inputs=input_prompt | |
) | |
return demo | |
if __name__ == "__main__": | |
demo = create_interface() | |
demo.queue().launch(show_api=False) |