Spaces:
Sleeping
Sleeping
# Import necessary libraries | |
import torch | |
from transformers import AutoTokenizer, AutoConfig, AutoModelForCausalLM, pipeline | |
import gradio as gr | |
# Load Goldfish model for Dhivehi | |
language = 'Dhivehi' | |
# Load model | |
goldfish_model = 'goldfish-models/div_thaa_full' | |
config = AutoConfig.from_pretrained(goldfish_model) | |
tokenizer = AutoTokenizer.from_pretrained(goldfish_model) | |
model = AutoModelForCausalLM.from_pretrained(goldfish_model, config=config) | |
if torch.cuda.is_available(): | |
model = model.cuda() # Load onto GPU | |
# Create text generation pipeline | |
text_generator = pipeline('text-generation', model=model, tokenizer=tokenizer) | |
# Function to generate text | |
def generate_text(input_text): | |
output = text_generator(input_text, max_new_tokens=25, add_special_tokens=False, do_sample=True) | |
return output[0]['generated_text'] | |
# Create Gradio interface | |
styles = """ | |
.thaana textarea { | |
font-size: 18px !important; | |
font-family: 'MV_Faseyha', 'Faruma', 'A_Faruma', 'Noto Sans Thaana', 'MV Boli'; | |
line-height: 1.8 !important; | |
} | |
""" | |
demo = gr.Interface( | |
fn=generate_text, | |
css=styles, | |
inputs=gr.Textbox(lines=2, label="Enter Dhivehi Text", rtl=True, elem_classes="thaana"), | |
outputs=gr.Textbox(lines=2, rtl=True, elem_classes="thaana"), | |
title="Demo Dhivehi Text Generator", | |
description="Generate text in Dhivehi language. This model is trained to generate coherent text based on the input prompt.", | |
article="<p>Model: Goldfish is a suite of monolingual language models trained for 350 languages. This model is the Dhivehi (Thaana script). For more details, visit the <a href='https://github.com/tylerachang/goldfish' target='_blank'>Goldfish Models GitHub repository</a>.</p>" | |
) | |
# Launch the app | |
demo.launch() |