Spaces:
Running
on
Zero
Running
on
Zero
David Day
commited on
Commit
•
4d8a17e
1
Parent(s):
9e1deca
Fix ZeroGPT issue.
Browse files- app.py +21 -131
- model_worker.py +4 -144
app.py
CHANGED
@@ -3,8 +3,6 @@ import datetime
|
|
3 |
import hashlib
|
4 |
import json
|
5 |
import os
|
6 |
-
import subprocess
|
7 |
-
import sys
|
8 |
import time
|
9 |
|
10 |
import gradio as gr
|
@@ -13,22 +11,17 @@ import requests
|
|
13 |
from constants import LOGDIR
|
14 |
from conversation import (default_conversation, conv_templates,
|
15 |
SeparatorStyle)
|
16 |
-
from utils import (build_logger, server_error_msg
|
17 |
-
violates_moderation, moderation_msg)
|
18 |
|
19 |
|
20 |
logger = build_logger("gradio_web_server", "gradio_web_server.log")
|
21 |
|
22 |
-
|
23 |
|
24 |
no_change_btn = gr.Button()
|
25 |
enable_btn = gr.Button(interactive=True)
|
26 |
disable_btn = gr.Button(interactive=False)
|
27 |
|
28 |
-
priority = {
|
29 |
-
"vicuna-13b": "aaaaaaa",
|
30 |
-
"koala-13b": "aaaaaab",
|
31 |
-
}
|
32 |
|
33 |
|
34 |
def get_conv_log_filename():
|
@@ -36,17 +29,6 @@ def get_conv_log_filename():
|
|
36 |
name = os.path.join(LOGDIR, f"{t.year}-{t.month:02d}-{t.day:02d}-conv.json")
|
37 |
return name
|
38 |
|
39 |
-
|
40 |
-
def get_model_list():
|
41 |
-
ret = requests.post(args.controller_url + "/refresh_all_workers")
|
42 |
-
assert ret.status_code == 200
|
43 |
-
ret = requests.post(args.controller_url + "/list_models")
|
44 |
-
models = ret.json()["models"]
|
45 |
-
models.sort(key=lambda x: priority.get(x, x))
|
46 |
-
logger.info(f"Models: {models}")
|
47 |
-
return models
|
48 |
-
|
49 |
-
|
50 |
get_window_url_params = """
|
51 |
function() {
|
52 |
const params = new URLSearchParams(window.location.search);
|
@@ -60,24 +42,11 @@ function() {
|
|
60 |
def load_demo(url_params, request: gr.Request):
|
61 |
logger.info(f"load_demo. ip: {request.client.host}. params: {url_params}")
|
62 |
|
|
|
63 |
dropdown_update = gr.Dropdown(visible=True)
|
64 |
-
|
65 |
-
model = url_params["model"]
|
66 |
-
if model in models:
|
67 |
-
dropdown_update = gr.Dropdown(value=model, visible=True)
|
68 |
-
|
69 |
-
state = default_conversation.copy()
|
70 |
-
return state, dropdown_update
|
71 |
-
|
72 |
|
73 |
-
def load_demo_refresh_model_list(request: gr.Request):
|
74 |
-
logger.info(f"load_demo. ip: {request.client.host}")
|
75 |
-
models = get_model_list()
|
76 |
state = default_conversation.copy()
|
77 |
-
dropdown_update = gr.Dropdown(
|
78 |
-
choices=models,
|
79 |
-
value=models[0] if len(models) > 0 else ""
|
80 |
-
)
|
81 |
return state, dropdown_update
|
82 |
|
83 |
|
@@ -132,12 +101,6 @@ def add_text(state, text, image, image_process_mode, request: gr.Request):
|
|
132 |
if len(text) <= 0 and image is None:
|
133 |
state.skip_next = True
|
134 |
return (state, state.to_gradio_chatbot(), "", None) + (no_change_btn,) * 5
|
135 |
-
if args.moderate:
|
136 |
-
flagged = violates_moderation(text)
|
137 |
-
if flagged:
|
138 |
-
state.skip_next = True
|
139 |
-
return (state, state.to_gradio_chatbot(), moderation_msg, None) + (
|
140 |
-
no_change_btn,) * 5
|
141 |
|
142 |
text = text[:1536] # Hard cut-off
|
143 |
if image is not None:
|
@@ -152,7 +115,6 @@ def add_text(state, text, image, image_process_mode, request: gr.Request):
|
|
152 |
state.skip_next = False
|
153 |
return (state, state.to_gradio_chatbot(), "", None) + (disable_btn,) * 5
|
154 |
|
155 |
-
|
156 |
def http_bot(state, model_selector, temperature, top_p, max_new_tokens, request: gr.Request):
|
157 |
logger.info(f"http_bot. ip: {request.client.host}")
|
158 |
start_tstamp = time.time()
|
@@ -204,18 +166,6 @@ def http_bot(state, model_selector, temperature, top_p, max_new_tokens, request:
|
|
204 |
new_state.append_message(new_state.roles[1], None)
|
205 |
state = new_state
|
206 |
|
207 |
-
# Query worker address
|
208 |
-
controller_url = args.controller_url
|
209 |
-
ret = requests.post(controller_url + "/get_worker_address",
|
210 |
-
json={"model": model_name})
|
211 |
-
worker_addr = ret.json()["address"]
|
212 |
-
logger.info(f"model_name: {model_name}, worker_addr: {worker_addr}")
|
213 |
-
|
214 |
-
# No available worker
|
215 |
-
if worker_addr == "":
|
216 |
-
state.messages[-1][-1] = server_error_msg
|
217 |
-
yield (state, state.to_gradio_chatbot(), disable_btn, disable_btn, disable_btn, enable_btn, enable_btn)
|
218 |
-
return
|
219 |
|
220 |
# Construct prompt
|
221 |
prompt = state.get_prompt()
|
@@ -248,9 +198,7 @@ def http_bot(state, model_selector, temperature, top_p, max_new_tokens, request:
|
|
248 |
|
249 |
try:
|
250 |
# Stream output
|
251 |
-
|
252 |
-
headers=headers, json=pload, stream=True, timeout=10)
|
253 |
-
for chunk in response.iter_lines(decode_unicode=False, delimiter=b"\0"):
|
254 |
if chunk:
|
255 |
data = json.loads(chunk.decode())
|
256 |
if data["error_code"] == 0:
|
@@ -312,14 +260,12 @@ block_css = """
|
|
312 |
|
313 |
"""
|
314 |
|
315 |
-
def build_demo(
|
316 |
textbox = gr.Textbox(show_label=False, placeholder="Enter text and press ENTER", container=False)
|
317 |
with gr.Blocks(title="LLaVA", theme=gr.themes.Default(), css=block_css) as demo:
|
318 |
state = gr.State()
|
319 |
|
320 |
-
|
321 |
-
gr.Markdown(title_markdown)
|
322 |
-
|
323 |
with gr.Row():
|
324 |
with gr.Column(scale=2):
|
325 |
# add a description
|
@@ -381,9 +327,8 @@ This is the demo for Dr-LLaVA. So far it could only be used for H&E stained Bone
|
|
381 |
regenerate_btn = gr.Button(value="🔄 Regenerate", interactive=False)
|
382 |
clear_btn = gr.Button(value="🗑️ Clear", interactive=False)
|
383 |
|
384 |
-
|
385 |
-
|
386 |
-
gr.Markdown(learn_more_markdown)
|
387 |
url_params = gr.JSON(visible=False)
|
388 |
|
389 |
# Register listeners
|
@@ -444,84 +389,29 @@ This is the demo for Dr-LLaVA. So far it could only be used for H&E stained Bone
|
|
444 |
[state, chatbot] + btn_list,
|
445 |
concurrency_limit=concurrency_count
|
446 |
)
|
447 |
-
|
448 |
-
|
449 |
-
|
450 |
-
|
451 |
-
|
452 |
-
|
453 |
-
|
454 |
-
)
|
455 |
-
elif args.model_list_mode == "reload":
|
456 |
-
demo.load(
|
457 |
-
load_demo_refresh_model_list,
|
458 |
-
None,
|
459 |
-
[state, model_selector],
|
460 |
-
queue=False
|
461 |
-
)
|
462 |
-
else:
|
463 |
-
raise ValueError(f"Unknown model list mode: {args.model_list_mode}")
|
464 |
-
|
465 |
return demo
|
466 |
|
467 |
-
def start_controller():
|
468 |
-
logger.info("Starting the controller")
|
469 |
-
controller_command = [
|
470 |
-
"python",
|
471 |
-
"-m",
|
472 |
-
"controller",
|
473 |
-
"--host",
|
474 |
-
"0.0.0.0",
|
475 |
-
"--port",
|
476 |
-
"10000",
|
477 |
-
]
|
478 |
-
return subprocess.Popen(controller_command)
|
479 |
-
|
480 |
-
def start_worker():
|
481 |
-
logger.info(f"Starting the model worker")
|
482 |
-
worker_command = [
|
483 |
-
"python",
|
484 |
-
"-m",
|
485 |
-
"model_worker",
|
486 |
-
"--host",
|
487 |
-
"0.0.0.0",
|
488 |
-
"--controller",
|
489 |
-
"http://localhost:10000",
|
490 |
-
"--load-bf16",
|
491 |
-
"--model-name",
|
492 |
-
"llava-rlhf-13b-v1.5-336",
|
493 |
-
"--model-path",
|
494 |
-
"daviddaytw/Dr-LLaVA-sft",
|
495 |
-
"--lora-path",
|
496 |
-
"daviddaytw/Dr-LLaVA-lora-adapter",
|
497 |
-
]
|
498 |
-
return subprocess.Popen(worker_command)
|
499 |
-
|
500 |
if __name__ == "__main__":
|
501 |
parser = argparse.ArgumentParser()
|
502 |
parser.add_argument("--host", type=str, default="0.0.0.0")
|
503 |
parser.add_argument("--port", type=int)
|
504 |
-
parser.add_argument("--controller-url", type=str, default="http://localhost:10000")
|
505 |
parser.add_argument("--concurrency-count", type=int, default=16)
|
506 |
-
parser.add_argument(
|
507 |
-
"--model-list-mode", type=str, default="reload", choices=["once", "reload"]
|
508 |
-
)
|
509 |
parser.add_argument("--share", action="store_true")
|
510 |
-
parser.add_argument("--moderate", action="store_true")
|
511 |
-
parser.add_argument("--embed", action="store_true")
|
512 |
args = parser.parse_args()
|
513 |
logger.info(f"args: {args}")
|
514 |
|
515 |
-
|
516 |
-
|
517 |
-
|
518 |
-
|
519 |
-
|
520 |
-
|
521 |
-
models = get_model_list()
|
522 |
-
|
523 |
-
logger.info(args)
|
524 |
-
demo = build_demo(args.embed, concurrency_count=args.concurrency_count)
|
525 |
demo.queue(
|
526 |
api_open=False
|
527 |
).launch(
|
|
|
3 |
import hashlib
|
4 |
import json
|
5 |
import os
|
|
|
|
|
6 |
import time
|
7 |
|
8 |
import gradio as gr
|
|
|
11 |
from constants import LOGDIR
|
12 |
from conversation import (default_conversation, conv_templates,
|
13 |
SeparatorStyle)
|
14 |
+
from utils import (build_logger, server_error_msg)
|
|
|
15 |
|
16 |
|
17 |
logger = build_logger("gradio_web_server", "gradio_web_server.log")
|
18 |
|
19 |
+
from model_worker import ModelWorker
|
20 |
|
21 |
no_change_btn = gr.Button()
|
22 |
enable_btn = gr.Button(interactive=True)
|
23 |
disable_btn = gr.Button(interactive=False)
|
24 |
|
|
|
|
|
|
|
|
|
25 |
|
26 |
|
27 |
def get_conv_log_filename():
|
|
|
29 |
name = os.path.join(LOGDIR, f"{t.year}-{t.month:02d}-{t.day:02d}-conv.json")
|
30 |
return name
|
31 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
get_window_url_params = """
|
33 |
function() {
|
34 |
const params = new URLSearchParams(window.location.search);
|
|
|
42 |
def load_demo(url_params, request: gr.Request):
|
43 |
logger.info(f"load_demo. ip: {request.client.host}. params: {url_params}")
|
44 |
|
45 |
+
global worker
|
46 |
dropdown_update = gr.Dropdown(visible=True)
|
47 |
+
worker = ModelWorker(model_path, None, model_name, True, lora_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
|
|
|
|
|
|
|
49 |
state = default_conversation.copy()
|
|
|
|
|
|
|
|
|
50 |
return state, dropdown_update
|
51 |
|
52 |
|
|
|
101 |
if len(text) <= 0 and image is None:
|
102 |
state.skip_next = True
|
103 |
return (state, state.to_gradio_chatbot(), "", None) + (no_change_btn,) * 5
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
|
105 |
text = text[:1536] # Hard cut-off
|
106 |
if image is not None:
|
|
|
115 |
state.skip_next = False
|
116 |
return (state, state.to_gradio_chatbot(), "", None) + (disable_btn,) * 5
|
117 |
|
|
|
118 |
def http_bot(state, model_selector, temperature, top_p, max_new_tokens, request: gr.Request):
|
119 |
logger.info(f"http_bot. ip: {request.client.host}")
|
120 |
start_tstamp = time.time()
|
|
|
166 |
new_state.append_message(new_state.roles[1], None)
|
167 |
state = new_state
|
168 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
169 |
|
170 |
# Construct prompt
|
171 |
prompt = state.get_prompt()
|
|
|
198 |
|
199 |
try:
|
200 |
# Stream output
|
201 |
+
for chunk in worker.generate_stream_gate(pload):
|
|
|
|
|
202 |
if chunk:
|
203 |
data = json.loads(chunk.decode())
|
204 |
if data["error_code"] == 0:
|
|
|
260 |
|
261 |
"""
|
262 |
|
263 |
+
def build_demo(cur_dir=None, concurrency_count=10):
|
264 |
textbox = gr.Textbox(show_label=False, placeholder="Enter text and press ENTER", container=False)
|
265 |
with gr.Blocks(title="LLaVA", theme=gr.themes.Default(), css=block_css) as demo:
|
266 |
state = gr.State()
|
267 |
|
268 |
+
gr.Markdown(title_markdown)
|
|
|
|
|
269 |
with gr.Row():
|
270 |
with gr.Column(scale=2):
|
271 |
# add a description
|
|
|
327 |
regenerate_btn = gr.Button(value="🔄 Regenerate", interactive=False)
|
328 |
clear_btn = gr.Button(value="🗑️ Clear", interactive=False)
|
329 |
|
330 |
+
gr.Markdown(tos_markdown)
|
331 |
+
gr.Markdown(learn_more_markdown)
|
|
|
332 |
url_params = gr.JSON(visible=False)
|
333 |
|
334 |
# Register listeners
|
|
|
389 |
[state, chatbot] + btn_list,
|
390 |
concurrency_limit=concurrency_count
|
391 |
)
|
392 |
+
|
393 |
+
demo.load(
|
394 |
+
load_demo,
|
395 |
+
[url_params],
|
396 |
+
[state, model_selector],
|
397 |
+
js=get_window_url_params
|
398 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
399 |
return demo
|
400 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
401 |
if __name__ == "__main__":
|
402 |
parser = argparse.ArgumentParser()
|
403 |
parser.add_argument("--host", type=str, default="0.0.0.0")
|
404 |
parser.add_argument("--port", type=int)
|
|
|
405 |
parser.add_argument("--concurrency-count", type=int, default=16)
|
|
|
|
|
|
|
406 |
parser.add_argument("--share", action="store_true")
|
|
|
|
|
407 |
args = parser.parse_args()
|
408 |
logger.info(f"args: {args}")
|
409 |
|
410 |
+
models = ['llava-rlhf-13b-v1.5-336']
|
411 |
+
model_path = 'daviddaytw/Dr-LLaVA-sft'
|
412 |
+
model_name = 'llava-rlhf-13b-v1.5-336'
|
413 |
+
lora_path = 'daviddaytw/Dr-LLaVA-lora-adapter'
|
414 |
+
demo = build_demo(concurrency_count=args.concurrency_count)
|
|
|
|
|
|
|
|
|
|
|
415 |
demo.queue(
|
416 |
api_open=False
|
417 |
).launch(
|
model_worker.py
CHANGED
@@ -1,26 +1,14 @@
|
|
1 |
"""
|
2 |
A model worker executes the model.
|
3 |
"""
|
4 |
-
import argparse
|
5 |
-
import asyncio
|
6 |
import json
|
7 |
-
import time
|
8 |
-
import threading
|
9 |
import uuid
|
10 |
-
|
11 |
-
from fastapi import FastAPI, Request, BackgroundTasks
|
12 |
-
from fastapi.responses import StreamingResponse
|
13 |
-
import requests
|
14 |
import torch
|
15 |
-
import uvicorn
|
16 |
-
from functools import partial
|
17 |
import spaces
|
18 |
|
19 |
from peft import PeftModel
|
20 |
|
21 |
-
from llava.
|
22 |
-
from llava.utils import (build_logger, server_error_msg,
|
23 |
-
pretty_print_semaphore)
|
24 |
from model_builder import load_pretrained_model
|
25 |
from llava.mm_utils import process_images, load_image_from_base64, tokenizer_image_token, KeywordsStoppingCriteria
|
26 |
from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
|
@@ -37,20 +25,8 @@ global_counter = 0
|
|
37 |
model_semaphore = None
|
38 |
|
39 |
|
40 |
-
def heart_beat_worker(controller):
|
41 |
-
|
42 |
-
while True:
|
43 |
-
time.sleep(WORKER_HEART_BEAT_INTERVAL)
|
44 |
-
controller.send_heart_beat()
|
45 |
-
|
46 |
-
|
47 |
class ModelWorker:
|
48 |
-
def __init__(self,
|
49 |
-
worker_id, no_register,
|
50 |
-
model_path, model_base, model_name,
|
51 |
-
load_8bit, load_4bit, load_bf16, lora_path):
|
52 |
-
self.controller_addr = controller_addr
|
53 |
-
self.worker_addr = worker_addr
|
54 |
self.worker_id = worker_id
|
55 |
if model_path.endswith("/"):
|
56 |
model_path = model_path[:-1]
|
@@ -65,7 +41,7 @@ class ModelWorker:
|
|
65 |
|
66 |
logger.info(f"Loading the model {self.model_name} on worker {worker_id} ...")
|
67 |
self.tokenizer, self.model, self.image_processor, self.context_len = load_pretrained_model(
|
68 |
-
model_path, model_base, self.model_name,
|
69 |
self.is_multimodal = 'llava' in self.model_name.lower()
|
70 |
self.load_bf16 = load_bf16
|
71 |
|
@@ -76,59 +52,7 @@ class ModelWorker:
|
|
76 |
torch_device='cpu',
|
77 |
device_map="cpu",
|
78 |
)
|
79 |
-
|
80 |
-
if not no_register:
|
81 |
-
self.register_to_controller()
|
82 |
-
self.heart_beat_thread = threading.Thread(
|
83 |
-
target=heart_beat_worker, args=(self,))
|
84 |
-
self.heart_beat_thread.start()
|
85 |
-
|
86 |
-
def register_to_controller(self):
|
87 |
-
logger.info("Register to controller")
|
88 |
-
|
89 |
-
url = self.controller_addr + "/register_worker"
|
90 |
-
data = {
|
91 |
-
"worker_name": self.worker_addr,
|
92 |
-
"check_heart_beat": True,
|
93 |
-
"worker_status": self.get_status()
|
94 |
-
}
|
95 |
-
r = requests.post(url, json=data)
|
96 |
-
assert r.status_code == 200
|
97 |
-
|
98 |
-
def send_heart_beat(self):
|
99 |
-
logger.info(f"Send heart beat. Models: {[self.model_name]}. "
|
100 |
-
f"Semaphore: {pretty_print_semaphore(model_semaphore)}. "
|
101 |
-
f"global_counter: {global_counter}")
|
102 |
-
|
103 |
-
url = self.controller_addr + "/receive_heart_beat"
|
104 |
-
|
105 |
-
while True:
|
106 |
-
try:
|
107 |
-
ret = requests.post(url, json={
|
108 |
-
"worker_name": self.worker_addr,
|
109 |
-
"queue_length": self.get_queue_length()}, timeout=5)
|
110 |
-
exist = ret.json()["exist"]
|
111 |
-
break
|
112 |
-
except requests.exceptions.RequestException as e:
|
113 |
-
logger.error(f"heart beat error: {e}")
|
114 |
-
time.sleep(5)
|
115 |
-
|
116 |
-
if not exist:
|
117 |
-
self.register_to_controller()
|
118 |
-
|
119 |
-
def get_queue_length(self):
|
120 |
-
if model_semaphore is None:
|
121 |
-
return 0
|
122 |
-
else:
|
123 |
-
return args.limit_model_concurrency - model_semaphore._value + (len(
|
124 |
-
model_semaphore._waiters) if model_semaphore._waiters is not None else 0)
|
125 |
-
|
126 |
-
def get_status(self):
|
127 |
-
return {
|
128 |
-
"model_names": [self.model_name],
|
129 |
-
"speed": 1,
|
130 |
-
"queue_length": self.get_queue_length(),
|
131 |
-
}
|
132 |
|
133 |
@spaces.GPU
|
134 |
def generate_stream(self, params):
|
@@ -232,71 +156,7 @@ class ModelWorker:
|
|
232 |
}
|
233 |
yield json.dumps(ret).encode() + b"\0"
|
234 |
|
235 |
-
|
236 |
-
app = FastAPI()
|
237 |
-
|
238 |
-
|
239 |
def release_model_semaphore(fn=None):
|
240 |
model_semaphore.release()
|
241 |
if fn is not None:
|
242 |
fn()
|
243 |
-
|
244 |
-
|
245 |
-
@app.post("/worker_generate_stream")
|
246 |
-
async def generate_stream(request: Request):
|
247 |
-
global model_semaphore, global_counter
|
248 |
-
global_counter += 1
|
249 |
-
params = await request.json()
|
250 |
-
|
251 |
-
if model_semaphore is None:
|
252 |
-
model_semaphore = asyncio.Semaphore(args.limit_model_concurrency)
|
253 |
-
await model_semaphore.acquire()
|
254 |
-
worker.send_heart_beat()
|
255 |
-
generator = worker.generate_stream_gate(params)
|
256 |
-
background_tasks = BackgroundTasks()
|
257 |
-
background_tasks.add_task(partial(release_model_semaphore, fn=worker.send_heart_beat))
|
258 |
-
return StreamingResponse(generator, background=background_tasks)
|
259 |
-
|
260 |
-
|
261 |
-
@app.post("/worker_get_status")
|
262 |
-
async def get_status(request: Request):
|
263 |
-
return worker.get_status()
|
264 |
-
|
265 |
-
|
266 |
-
if __name__ == "__main__":
|
267 |
-
parser = argparse.ArgumentParser()
|
268 |
-
parser.add_argument("--host", type=str, default="localhost")
|
269 |
-
parser.add_argument("--port", type=int, default=21002)
|
270 |
-
parser.add_argument("--worker-address", type=str,
|
271 |
-
default="http://localhost:21002")
|
272 |
-
parser.add_argument("--controller-address", type=str,
|
273 |
-
default="http://localhost:21001")
|
274 |
-
parser.add_argument("--model-path", type=str, default="facebook/opt-350m")
|
275 |
-
parser.add_argument("--model-base", type=str, default=None)
|
276 |
-
parser.add_argument("--model-name", type=str)
|
277 |
-
parser.add_argument("--multi-modal", action="store_true", help="Multimodal mode is automatically detected with model name, please make sure `llava` is included in the model path.")
|
278 |
-
parser.add_argument("--limit-model-concurrency", type=int, default=5)
|
279 |
-
parser.add_argument("--stream-interval", type=int, default=1)
|
280 |
-
parser.add_argument("--no-register", action="store_true")
|
281 |
-
parser.add_argument("--load-8bit", action="store_true")
|
282 |
-
parser.add_argument("--load-4bit", action="store_true")
|
283 |
-
parser.add_argument("--load-bf16", action="store_true")
|
284 |
-
parser.add_argument("--lora-path", type=str, default=None)
|
285 |
-
args = parser.parse_args()
|
286 |
-
logger.info(f"args: {args}")
|
287 |
-
|
288 |
-
if args.multi_modal:
|
289 |
-
logger.warning("Multimodal mode is automatically detected with model name, please make sure `llava` is included in the model path.")
|
290 |
-
|
291 |
-
worker = ModelWorker(args.controller_address,
|
292 |
-
args.worker_address,
|
293 |
-
worker_id,
|
294 |
-
args.no_register,
|
295 |
-
args.model_path,
|
296 |
-
args.model_base,
|
297 |
-
args.model_name,
|
298 |
-
args.load_8bit,
|
299 |
-
args.load_4bit,
|
300 |
-
args.load_bf16,
|
301 |
-
args.lora_path)
|
302 |
-
uvicorn.run(app, host=args.host, port=args.port, log_level="info")
|
|
|
1 |
"""
|
2 |
A model worker executes the model.
|
3 |
"""
|
|
|
|
|
4 |
import json
|
|
|
|
|
5 |
import uuid
|
|
|
|
|
|
|
|
|
6 |
import torch
|
|
|
|
|
7 |
import spaces
|
8 |
|
9 |
from peft import PeftModel
|
10 |
|
11 |
+
from llava.utils import (build_logger, server_error_msg)
|
|
|
|
|
12 |
from model_builder import load_pretrained_model
|
13 |
from llava.mm_utils import process_images, load_image_from_base64, tokenizer_image_token, KeywordsStoppingCriteria
|
14 |
from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
|
|
|
25 |
model_semaphore = None
|
26 |
|
27 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
class ModelWorker:
|
29 |
+
def __init__(self, model_path, model_base, model_name, load_bf16, lora_path):
|
|
|
|
|
|
|
|
|
|
|
30 |
self.worker_id = worker_id
|
31 |
if model_path.endswith("/"):
|
32 |
model_path = model_path[:-1]
|
|
|
41 |
|
42 |
logger.info(f"Loading the model {self.model_name} on worker {worker_id} ...")
|
43 |
self.tokenizer, self.model, self.image_processor, self.context_len = load_pretrained_model(
|
44 |
+
model_path, model_base, self.model_name, False, False, load_bf16=load_bf16)
|
45 |
self.is_multimodal = 'llava' in self.model_name.lower()
|
46 |
self.load_bf16 = load_bf16
|
47 |
|
|
|
52 |
torch_device='cpu',
|
53 |
device_map="cpu",
|
54 |
)
|
55 |
+
self.model.to("cuda:0")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
@spaces.GPU
|
58 |
def generate_stream(self, params):
|
|
|
156 |
}
|
157 |
yield json.dumps(ret).encode() + b"\0"
|
158 |
|
|
|
|
|
|
|
|
|
159 |
def release_model_semaphore(fn=None):
|
160 |
model_semaphore.release()
|
161 |
if fn is not None:
|
162 |
fn()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|