Spaces:
Sleeping
Sleeping
David Day
commited on
Commit
•
43f2643
1
Parent(s):
d96999d
Upload code.
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- README.md +1 -1
- app.py +529 -48
- constants.py +13 -0
- controller.py +298 -0
- conversation.py +396 -0
- examples/example1.jpeg +0 -0
- examples/example2.jpeg +0 -0
- llava/__init__.py +1 -0
- llava/constants.py +12 -0
- llava/conversation.py +381 -0
- llava/eval/eval_gpt_review.py +113 -0
- llava/eval/eval_gpt_review_bench.py +121 -0
- llava/eval/eval_gpt_review_visual.py +118 -0
- llava/eval/eval_science_qa.py +99 -0
- llava/eval/eval_science_qa_gpt4.py +104 -0
- llava/eval/eval_science_qa_gpt4_requery.py +149 -0
- llava/eval/generate_webpage_data_from_table.py +111 -0
- llava/eval/model_qa.py +85 -0
- llava/eval/model_vqa.py +112 -0
- llava/eval/model_vqa_science.py +141 -0
- llava/eval/qa_baseline_gpt35.py +74 -0
- llava/eval/run_llava.py +97 -0
- llava/eval/summarize_gpt_review.py +50 -0
- llava/eval/webpage/figures/alpaca.png +0 -0
- llava/eval/webpage/figures/bard.jpg +0 -0
- llava/eval/webpage/figures/chatgpt.svg +1 -0
- llava/eval/webpage/figures/llama.jpg +0 -0
- llava/eval/webpage/figures/swords_FILL0_wght300_GRAD0_opsz48.svg +1 -0
- llava/eval/webpage/figures/vicuna.jpeg +0 -0
- llava/eval/webpage/index.html +162 -0
- llava/eval/webpage/script.js +245 -0
- llava/eval/webpage/styles.css +105 -0
- llava/mm_utils.py +99 -0
- llava/model/__init__.py +2 -0
- llava/model/apply_delta.py +48 -0
- llava/model/builder.py +151 -0
- llava/model/consolidate.py +29 -0
- llava/model/language_model/llava_llama.py +140 -0
- llava/model/language_model/llava_mpt.py +113 -0
- llava/model/language_model/mpt/adapt_tokenizer.py +41 -0
- llava/model/language_model/mpt/attention.py +300 -0
- llava/model/language_model/mpt/blocks.py +41 -0
- llava/model/language_model/mpt/configuration_mpt.py +118 -0
- llava/model/language_model/mpt/custom_embedding.py +11 -0
- llava/model/language_model/mpt/flash_attn_triton.py +484 -0
- llava/model/language_model/mpt/hf_prefixlm_converter.py +415 -0
- llava/model/language_model/mpt/meta_init_context.py +94 -0
- llava/model/language_model/mpt/modeling_mpt.py +331 -0
- llava/model/language_model/mpt/norm.py +56 -0
- llava/model/language_model/mpt/param_init_fns.py +181 -0
README.md
CHANGED
@@ -4,7 +4,7 @@ emoji: 💬
|
|
4 |
colorFrom: yellow
|
5 |
colorTo: purple
|
6 |
sdk: gradio
|
7 |
-
sdk_version:
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: apache-2.0
|
|
|
4 |
colorFrom: yellow
|
5 |
colorTo: purple
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 3.35.2
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: apache-2.0
|
app.py
CHANGED
@@ -1,63 +1,544 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
-
|
3 |
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
8 |
|
|
|
9 |
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
system_message,
|
14 |
-
max_tokens,
|
15 |
-
temperature,
|
16 |
-
top_p,
|
17 |
-
):
|
18 |
-
messages = [{"role": "system", "content": system_message}]
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
messages.append({"role": "assistant", "content": val[1]})
|
25 |
|
26 |
-
messages.append({"role": "user", "content": message})
|
27 |
|
28 |
-
|
|
|
|
|
|
|
29 |
|
30 |
-
for message in client.chat_completion(
|
31 |
-
messages,
|
32 |
-
max_tokens=max_tokens,
|
33 |
-
stream=True,
|
34 |
-
temperature=temperature,
|
35 |
-
top_p=top_p,
|
36 |
-
):
|
37 |
-
token = message.choices[0].delta.content
|
38 |
|
39 |
-
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
"""
|
43 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
"""
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
gr.
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
|
61 |
|
62 |
if __name__ == "__main__":
|
63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import datetime
|
3 |
+
import hashlib
|
4 |
+
import json
|
5 |
+
import os
|
6 |
+
import subprocess
|
7 |
+
import sys
|
8 |
+
import time
|
9 |
+
|
10 |
import gradio as gr
|
11 |
+
import requests
|
12 |
|
13 |
+
from constants import LOGDIR
|
14 |
+
from conversation import (default_conversation, conv_templates,
|
15 |
+
SeparatorStyle)
|
16 |
+
from utils import (build_logger, server_error_msg,
|
17 |
+
violates_moderation, moderation_msg)
|
18 |
+
|
19 |
+
|
20 |
+
logger = build_logger("gradio_web_server", "gradio_web_server.log")
|
21 |
|
22 |
+
headers = {"User-Agent": "LLaVA Client"}
|
23 |
|
24 |
+
no_change_btn = gr.Button()
|
25 |
+
enable_btn = gr.Button(interactive=True)
|
26 |
+
disable_btn = gr.Button(interactive=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
+
priority = {
|
29 |
+
"vicuna-13b": "aaaaaaa",
|
30 |
+
"koala-13b": "aaaaaab",
|
31 |
+
}
|
|
|
32 |
|
|
|
33 |
|
34 |
+
def get_conv_log_filename():
|
35 |
+
t = datetime.datetime.now()
|
36 |
+
name = os.path.join(LOGDIR, f"{t.year}-{t.month:02d}-{t.day:02d}-conv.json")
|
37 |
+
return name
|
38 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
+
def get_model_list():
|
41 |
+
ret = requests.post(args.controller_url + "/refresh_all_workers")
|
42 |
+
assert ret.status_code == 200
|
43 |
+
ret = requests.post(args.controller_url + "/list_models")
|
44 |
+
models = ret.json()["models"]
|
45 |
+
models.sort(key=lambda x: priority.get(x, x))
|
46 |
+
logger.info(f"Models: {models}")
|
47 |
+
return models
|
48 |
|
49 |
+
|
50 |
+
get_window_url_params = """
|
51 |
+
function() {
|
52 |
+
const params = new URLSearchParams(window.location.search);
|
53 |
+
url_params = Object.fromEntries(params);
|
54 |
+
console.log(url_params);
|
55 |
+
return url_params;
|
56 |
+
}
|
57 |
"""
|
58 |
+
|
59 |
+
|
60 |
+
def load_demo(url_params, request: gr.Request):
|
61 |
+
logger.info(f"load_demo. ip: {request.client.host}. params: {url_params}")
|
62 |
+
|
63 |
+
dropdown_update = gr.Dropdown(visible=True)
|
64 |
+
if "model" in url_params:
|
65 |
+
model = url_params["model"]
|
66 |
+
if model in models:
|
67 |
+
dropdown_update = gr.Dropdown(value=model, visible=True)
|
68 |
+
|
69 |
+
state = default_conversation.copy()
|
70 |
+
return state, dropdown_update
|
71 |
+
|
72 |
+
|
73 |
+
def load_demo_refresh_model_list(request: gr.Request):
|
74 |
+
logger.info(f"load_demo. ip: {request.client.host}")
|
75 |
+
models = get_model_list()
|
76 |
+
state = default_conversation.copy()
|
77 |
+
dropdown_update = gr.Dropdown(
|
78 |
+
choices=models,
|
79 |
+
value=models[0] if len(models) > 0 else ""
|
80 |
+
)
|
81 |
+
return state, dropdown_update
|
82 |
+
|
83 |
+
|
84 |
+
def vote_last_response(state, vote_type, model_selector, request: gr.Request):
|
85 |
+
with open(get_conv_log_filename(), "a") as fout:
|
86 |
+
data = {
|
87 |
+
"tstamp": round(time.time(), 4),
|
88 |
+
"type": vote_type,
|
89 |
+
"model": model_selector,
|
90 |
+
"state": state.dict(),
|
91 |
+
"ip": request.client.host,
|
92 |
+
}
|
93 |
+
fout.write(json.dumps(data) + "\n")
|
94 |
+
|
95 |
+
|
96 |
+
def upvote_last_response(state, model_selector, request: gr.Request):
|
97 |
+
logger.info(f"upvote. ip: {request.client.host}")
|
98 |
+
vote_last_response(state, "upvote", model_selector, request)
|
99 |
+
return ("",) + (disable_btn,) * 3
|
100 |
+
|
101 |
+
|
102 |
+
def downvote_last_response(state, model_selector, request: gr.Request):
|
103 |
+
logger.info(f"downvote. ip: {request.client.host}")
|
104 |
+
vote_last_response(state, "downvote", model_selector, request)
|
105 |
+
return ("",) + (disable_btn,) * 3
|
106 |
+
|
107 |
+
|
108 |
+
def flag_last_response(state, model_selector, request: gr.Request):
|
109 |
+
logger.info(f"flag. ip: {request.client.host}")
|
110 |
+
vote_last_response(state, "flag", model_selector, request)
|
111 |
+
return ("",) + (disable_btn,) * 3
|
112 |
+
|
113 |
+
|
114 |
+
def regenerate(state, image_process_mode, request: gr.Request):
|
115 |
+
logger.info(f"regenerate. ip: {request.client.host}")
|
116 |
+
state.messages[-1][-1] = None
|
117 |
+
prev_human_msg = state.messages[-2]
|
118 |
+
if type(prev_human_msg[1]) in (tuple, list):
|
119 |
+
prev_human_msg[1] = (*prev_human_msg[1][:2], image_process_mode)
|
120 |
+
state.skip_next = False
|
121 |
+
return (state, state.to_gradio_chatbot(), "", None) + (disable_btn,) * 5
|
122 |
+
|
123 |
+
|
124 |
+
def clear_history(request: gr.Request):
|
125 |
+
logger.info(f"clear_history. ip: {request.client.host}")
|
126 |
+
state = default_conversation.copy()
|
127 |
+
return (state, state.to_gradio_chatbot(), "", None) + (disable_btn,) * 5
|
128 |
+
|
129 |
+
|
130 |
+
def add_text(state, text, image, image_process_mode, request: gr.Request):
|
131 |
+
logger.info(f"add_text. ip: {request.client.host}. len: {len(text)}")
|
132 |
+
if len(text) <= 0 and image is None:
|
133 |
+
state.skip_next = True
|
134 |
+
return (state, state.to_gradio_chatbot(), "", None) + (no_change_btn,) * 5
|
135 |
+
if args.moderate:
|
136 |
+
flagged = violates_moderation(text)
|
137 |
+
if flagged:
|
138 |
+
state.skip_next = True
|
139 |
+
return (state, state.to_gradio_chatbot(), moderation_msg, None) + (
|
140 |
+
no_change_btn,) * 5
|
141 |
+
|
142 |
+
text = text[:1536] # Hard cut-off
|
143 |
+
if image is not None:
|
144 |
+
text = text[:1200] # Hard cut-off for images
|
145 |
+
if '<image>' not in text:
|
146 |
+
# text = '<Image><image></Image>' + text
|
147 |
+
text = text + '\n<image>'
|
148 |
+
text = (text, image, image_process_mode)
|
149 |
+
state = default_conversation.copy()
|
150 |
+
state.append_message(state.roles[0], text)
|
151 |
+
state.append_message(state.roles[1], None)
|
152 |
+
state.skip_next = False
|
153 |
+
return (state, state.to_gradio_chatbot(), "", None) + (disable_btn,) * 5
|
154 |
+
|
155 |
+
|
156 |
+
def http_bot(state, model_selector, temperature, top_p, max_new_tokens, request: gr.Request):
|
157 |
+
logger.info(f"http_bot. ip: {request.client.host}")
|
158 |
+
start_tstamp = time.time()
|
159 |
+
model_name = model_selector
|
160 |
+
|
161 |
+
if state.skip_next:
|
162 |
+
# This generate call is skipped due to invalid inputs
|
163 |
+
yield (state, state.to_gradio_chatbot()) + (no_change_btn,) * 5
|
164 |
+
return
|
165 |
+
|
166 |
+
if len(state.messages) == state.offset + 2:
|
167 |
+
# First round of conversation
|
168 |
+
if "llava" in model_name.lower():
|
169 |
+
if 'llama-2' in model_name.lower():
|
170 |
+
template_name = "llava_llama_2"
|
171 |
+
elif "mistral" in model_name.lower() or "mixtral" in model_name.lower():
|
172 |
+
if 'orca' in model_name.lower():
|
173 |
+
template_name = "mistral_orca"
|
174 |
+
elif 'hermes' in model_name.lower():
|
175 |
+
template_name = "chatml_direct"
|
176 |
+
else:
|
177 |
+
template_name = "mistral_instruct"
|
178 |
+
elif 'llava-v1.6-34b' in model_name.lower():
|
179 |
+
template_name = "chatml_direct"
|
180 |
+
elif "v1" in model_name.lower():
|
181 |
+
if 'mmtag' in model_name.lower():
|
182 |
+
template_name = "v1_mmtag"
|
183 |
+
elif 'plain' in model_name.lower() and 'finetune' not in model_name.lower():
|
184 |
+
template_name = "v1_mmtag"
|
185 |
+
else:
|
186 |
+
template_name = "llava_v1"
|
187 |
+
elif "mpt" in model_name.lower():
|
188 |
+
template_name = "mpt"
|
189 |
+
else:
|
190 |
+
if 'mmtag' in model_name.lower():
|
191 |
+
template_name = "v0_mmtag"
|
192 |
+
elif 'plain' in model_name.lower() and 'finetune' not in model_name.lower():
|
193 |
+
template_name = "v0_mmtag"
|
194 |
+
else:
|
195 |
+
template_name = "llava_v0"
|
196 |
+
elif "mpt" in model_name:
|
197 |
+
template_name = "mpt_text"
|
198 |
+
elif "llama-2" in model_name:
|
199 |
+
template_name = "llama_2"
|
200 |
+
else:
|
201 |
+
template_name = "vicuna_v1"
|
202 |
+
new_state = conv_templates[template_name].copy()
|
203 |
+
new_state.append_message(new_state.roles[0], state.messages[-2][1])
|
204 |
+
new_state.append_message(new_state.roles[1], None)
|
205 |
+
state = new_state
|
206 |
+
|
207 |
+
# Query worker address
|
208 |
+
controller_url = args.controller_url
|
209 |
+
ret = requests.post(controller_url + "/get_worker_address",
|
210 |
+
json={"model": model_name})
|
211 |
+
worker_addr = ret.json()["address"]
|
212 |
+
logger.info(f"model_name: {model_name}, worker_addr: {worker_addr}")
|
213 |
+
|
214 |
+
# No available worker
|
215 |
+
if worker_addr == "":
|
216 |
+
state.messages[-1][-1] = server_error_msg
|
217 |
+
yield (state, state.to_gradio_chatbot(), disable_btn, disable_btn, disable_btn, enable_btn, enable_btn)
|
218 |
+
return
|
219 |
+
|
220 |
+
# Construct prompt
|
221 |
+
prompt = state.get_prompt()
|
222 |
+
|
223 |
+
all_images = state.get_images(return_pil=True)
|
224 |
+
all_image_hash = [hashlib.md5(image.tobytes()).hexdigest() for image in all_images]
|
225 |
+
for image, hash in zip(all_images, all_image_hash):
|
226 |
+
t = datetime.datetime.now()
|
227 |
+
filename = os.path.join(LOGDIR, "serve_images", f"{t.year}-{t.month:02d}-{t.day:02d}", f"{hash}.jpg")
|
228 |
+
if not os.path.isfile(filename):
|
229 |
+
os.makedirs(os.path.dirname(filename), exist_ok=True)
|
230 |
+
image.save(filename)
|
231 |
+
|
232 |
+
# Make requests
|
233 |
+
pload = {
|
234 |
+
"model": model_name,
|
235 |
+
"prompt": prompt,
|
236 |
+
"temperature": float(temperature),
|
237 |
+
"top_p": float(top_p),
|
238 |
+
"max_new_tokens": min(int(max_new_tokens), 1536),
|
239 |
+
"stop": state.sep if state.sep_style in [SeparatorStyle.SINGLE, SeparatorStyle.MPT] else state.sep2,
|
240 |
+
"images": f'List of {len(state.get_images())} images: {all_image_hash}',
|
241 |
+
}
|
242 |
+
logger.info(f"==== request ====\n{pload}")
|
243 |
+
|
244 |
+
pload['images'] = state.get_images()
|
245 |
+
|
246 |
+
state.messages[-1][-1] = "▌"
|
247 |
+
yield (state, state.to_gradio_chatbot()) + (disable_btn,) * 5
|
248 |
+
|
249 |
+
try:
|
250 |
+
# Stream output
|
251 |
+
response = requests.post(worker_addr + "/worker_generate_stream",
|
252 |
+
headers=headers, json=pload, stream=True, timeout=10)
|
253 |
+
for chunk in response.iter_lines(decode_unicode=False, delimiter=b"\0"):
|
254 |
+
if chunk:
|
255 |
+
data = json.loads(chunk.decode())
|
256 |
+
if data["error_code"] == 0:
|
257 |
+
output = data["text"][len(prompt):].strip()
|
258 |
+
state.messages[-1][-1] = output + "▌"
|
259 |
+
yield (state, state.to_gradio_chatbot()) + (disable_btn,) * 5
|
260 |
+
else:
|
261 |
+
output = data["text"] + f" (error_code: {data['error_code']})"
|
262 |
+
state.messages[-1][-1] = output
|
263 |
+
yield (state, state.to_gradio_chatbot()) + (disable_btn, disable_btn, disable_btn, enable_btn, enable_btn)
|
264 |
+
return
|
265 |
+
time.sleep(0.03)
|
266 |
+
except requests.exceptions.RequestException as e:
|
267 |
+
state.messages[-1][-1] = server_error_msg
|
268 |
+
yield (state, state.to_gradio_chatbot()) + (disable_btn, disable_btn, disable_btn, enable_btn, enable_btn)
|
269 |
+
return
|
270 |
+
|
271 |
+
state.messages[-1][-1] = state.messages[-1][-1][:-1]
|
272 |
+
yield (state, state.to_gradio_chatbot()) + (enable_btn,) * 5
|
273 |
+
|
274 |
+
finish_tstamp = time.time()
|
275 |
+
logger.info(f"{output}")
|
276 |
+
|
277 |
+
with open(get_conv_log_filename(), "a") as fout:
|
278 |
+
data = {
|
279 |
+
"tstamp": round(finish_tstamp, 4),
|
280 |
+
"type": "chat",
|
281 |
+
"model": model_name,
|
282 |
+
"start": round(start_tstamp, 4),
|
283 |
+
"finish": round(finish_tstamp, 4),
|
284 |
+
"state": state.dict(),
|
285 |
+
"images": all_image_hash,
|
286 |
+
"ip": request.client.host,
|
287 |
+
}
|
288 |
+
fout.write(json.dumps(data) + "\n")
|
289 |
+
|
290 |
+
title_markdown = ("""
|
291 |
+
# Dr-LLaVA: Visual Instruction Tuning with Symbolic Clinical Grounding
|
292 |
+
[[Project Page](https://XXXXX)] [[Code](https://github.com/AlaaLab/Dr-LLaVA)] | 📚 [[Dr-LLaVA](https://arxiv.org/abs/2405.19567)]]
|
293 |
+
""")
|
294 |
+
|
295 |
+
tos_markdown = ("""
|
296 |
+
User agrees to the following terms of use:
|
297 |
+
1. The service is a research preview intended for non-commercial use only.
|
298 |
+
2. The service is provided "as is" without warranty of any kind.
|
299 |
+
""")
|
300 |
+
|
301 |
+
|
302 |
+
learn_more_markdown = ("""
|
303 |
+
### License
|
304 |
+
The service is a research preview intended for non-commercial use only, subject to the model [License](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md) of LLaMA, [Terms of Use](https://openai.com/policies/terms-of-use) of the data generated by OpenAI, and [Privacy Practices](https://chrome.google.com/webstore/detail/sharegpt-share-your-chatg/daiacboceoaocpibfodeljbdfacokfjb) of ShareGPT. Please contact us if you find any potential violation.
|
305 |
+
""")
|
306 |
+
|
307 |
+
block_css = """
|
308 |
+
|
309 |
+
#buttons button {
|
310 |
+
min-width: min(120px,100%);
|
311 |
+
}
|
312 |
+
|
313 |
"""
|
314 |
+
|
315 |
+
def build_demo(embed_mode, cur_dir=None, concurrency_count=10):
|
316 |
+
textbox = gr.Textbox(show_label=False, placeholder="Enter text and press ENTER", container=False)
|
317 |
+
with gr.Blocks(title="LLaVA", theme=gr.themes.Default(), css=block_css) as demo:
|
318 |
+
state = gr.State()
|
319 |
+
|
320 |
+
if not embed_mode:
|
321 |
+
gr.Markdown(title_markdown)
|
322 |
+
|
323 |
+
with gr.Row():
|
324 |
+
with gr.Column(scale=2):
|
325 |
+
# add a description
|
326 |
+
gr.Markdown("""<p style='text-align: center'> Shenghuan Sun, Gregory Goldgof, Alex Schubert, Zhiqing Sun, Atul Butte, Ahmed Alaa <br>
|
327 |
+
This is the demo for Dr-LLaVA. So far it could only be used for H&E stained Bone Marrow Aspirate images application.</p>
|
328 |
+
|
329 |
+
<b>Tips for using this demo:</b>
|
330 |
+
<ul>
|
331 |
+
<li>Drop a single image from a bone marrow aspirate whole slide image taken at 40x.</li>
|
332 |
+
</ul>
|
333 |
+
""")
|
334 |
+
# Replace 'path_to_image' with the path to your image file
|
335 |
+
gr.Image(value="https://i.postimg.cc/tJzyq5Dh/Dr-LLa-VA-Fig-1.png",
|
336 |
+
width=600, interactive=False, type="pil")
|
337 |
+
with gr.Column(scale=3):
|
338 |
+
with gr.Row(elem_id="model_selector_row"):
|
339 |
+
model_selector = gr.Dropdown(
|
340 |
+
choices=models,
|
341 |
+
value=models[0] if len(models) > 0 else "",
|
342 |
+
interactive=True,
|
343 |
+
show_label=False,
|
344 |
+
container=False)
|
345 |
+
|
346 |
+
imagebox = gr.Image(type="pil")
|
347 |
+
image_process_mode = gr.Radio(
|
348 |
+
["Crop", "Resize", "Pad", "Default"],
|
349 |
+
value="Default",
|
350 |
+
label="Preprocess for non-square image", visible=False)
|
351 |
+
|
352 |
+
if cur_dir is None:
|
353 |
+
cur_dir = os.path.dirname(os.path.abspath(__file__))
|
354 |
+
gr.Examples(examples=[
|
355 |
+
[f"{cur_dir}/examples/example1.jpeg", "Can you assess if these pathology images are suitable for identifying cancer upon inspection?"],
|
356 |
+
[f"{cur_dir}/examples/example2.jpeg", "Are you able to recognize the probable illness in the image patch?"],
|
357 |
+
], inputs=[imagebox, textbox])
|
358 |
+
|
359 |
+
with gr.Accordion("Parameters", open=False) as parameter_row:
|
360 |
+
temperature = gr.Slider(minimum=0.0, maximum=1.0, value=0.2, step=0.1, interactive=True, label="Temperature",)
|
361 |
+
top_p = gr.Slider(minimum=0.0, maximum=1.0, value=0.7, step=0.1, interactive=True, label="Top P",)
|
362 |
+
max_output_tokens = gr.Slider(minimum=0, maximum=1024, value=512, step=64, interactive=True, label="Max output tokens",)
|
363 |
+
|
364 |
+
with gr.Column(scale=6):
|
365 |
+
chatbot = gr.Chatbot(
|
366 |
+
elem_id="chatbot",
|
367 |
+
label="LLaVA Chatbot",
|
368 |
+
height=470,
|
369 |
+
layout="panel",
|
370 |
+
)
|
371 |
+
with gr.Row():
|
372 |
+
with gr.Column(scale=8):
|
373 |
+
textbox.render()
|
374 |
+
with gr.Column(scale=1, min_width=50):
|
375 |
+
submit_btn = gr.Button(value="Send", variant="primary")
|
376 |
+
with gr.Row(elem_id="buttons") as button_row:
|
377 |
+
upvote_btn = gr.Button(value="👍 Upvote", interactive=False)
|
378 |
+
downvote_btn = gr.Button(value="👎 Downvote", interactive=False)
|
379 |
+
flag_btn = gr.Button(value="⚠️ Flag", interactive=False)
|
380 |
+
#stop_btn = gr.Button(value="⏹️ Stop Generation", interactive=False)
|
381 |
+
regenerate_btn = gr.Button(value="🔄 Regenerate", interactive=False)
|
382 |
+
clear_btn = gr.Button(value="🗑️ Clear", interactive=False)
|
383 |
+
|
384 |
+
if not embed_mode:
|
385 |
+
gr.Markdown(tos_markdown)
|
386 |
+
gr.Markdown(learn_more_markdown)
|
387 |
+
url_params = gr.JSON(visible=False)
|
388 |
+
|
389 |
+
# Register listeners
|
390 |
+
btn_list = [upvote_btn, downvote_btn, flag_btn, regenerate_btn, clear_btn]
|
391 |
+
upvote_btn.click(
|
392 |
+
upvote_last_response,
|
393 |
+
[state, model_selector],
|
394 |
+
[textbox, upvote_btn, downvote_btn, flag_btn]
|
395 |
+
)
|
396 |
+
downvote_btn.click(
|
397 |
+
downvote_last_response,
|
398 |
+
[state, model_selector],
|
399 |
+
[textbox, upvote_btn, downvote_btn, flag_btn]
|
400 |
+
)
|
401 |
+
flag_btn.click(
|
402 |
+
flag_last_response,
|
403 |
+
[state, model_selector],
|
404 |
+
[textbox, upvote_btn, downvote_btn, flag_btn]
|
405 |
+
)
|
406 |
+
|
407 |
+
regenerate_btn.click(
|
408 |
+
regenerate,
|
409 |
+
[state, image_process_mode],
|
410 |
+
[state, chatbot, textbox, imagebox] + btn_list
|
411 |
+
).then(
|
412 |
+
http_bot,
|
413 |
+
[state, model_selector, temperature, top_p, max_output_tokens],
|
414 |
+
[state, chatbot] + btn_list,
|
415 |
+
concurrency_limit=concurrency_count
|
416 |
+
)
|
417 |
+
|
418 |
+
clear_btn.click(
|
419 |
+
clear_history,
|
420 |
+
None,
|
421 |
+
[state, chatbot, textbox, imagebox] + btn_list,
|
422 |
+
queue=False
|
423 |
+
)
|
424 |
+
|
425 |
+
textbox.submit(
|
426 |
+
add_text,
|
427 |
+
[state, textbox, imagebox, image_process_mode],
|
428 |
+
[state, chatbot, textbox, imagebox] + btn_list,
|
429 |
+
queue=False
|
430 |
+
).then(
|
431 |
+
http_bot,
|
432 |
+
[state, model_selector, temperature, top_p, max_output_tokens],
|
433 |
+
[state, chatbot] + btn_list,
|
434 |
+
concurrency_limit=concurrency_count
|
435 |
+
)
|
436 |
+
|
437 |
+
submit_btn.click(
|
438 |
+
add_text,
|
439 |
+
[state, textbox, imagebox, image_process_mode],
|
440 |
+
[state, chatbot, textbox, imagebox] + btn_list
|
441 |
+
).then(
|
442 |
+
http_bot,
|
443 |
+
[state, model_selector, temperature, top_p, max_output_tokens],
|
444 |
+
[state, chatbot] + btn_list,
|
445 |
+
concurrency_limit=concurrency_count
|
446 |
+
)
|
447 |
+
|
448 |
+
if args.model_list_mode == "once":
|
449 |
+
demo.load(
|
450 |
+
load_demo,
|
451 |
+
[url_params],
|
452 |
+
[state, model_selector],
|
453 |
+
js=get_window_url_params
|
454 |
+
)
|
455 |
+
elif args.model_list_mode == "reload":
|
456 |
+
demo.load(
|
457 |
+
load_demo_refresh_model_list,
|
458 |
+
None,
|
459 |
+
[state, model_selector],
|
460 |
+
queue=False
|
461 |
+
)
|
462 |
+
else:
|
463 |
+
raise ValueError(f"Unknown model list mode: {args.model_list_mode}")
|
464 |
+
|
465 |
+
return demo
|
466 |
+
|
467 |
+
def start_controller():
|
468 |
+
logger.info("Starting the controller")
|
469 |
+
controller_command = [
|
470 |
+
"python",
|
471 |
+
"-m",
|
472 |
+
"controller",
|
473 |
+
"--host",
|
474 |
+
"0.0.0.0",
|
475 |
+
"--port",
|
476 |
+
"10000",
|
477 |
+
]
|
478 |
+
return subprocess.Popen(controller_command)
|
479 |
+
|
480 |
+
def start_worker():
|
481 |
+
logger.info(f"Starting the model worker")
|
482 |
+
worker_command = [
|
483 |
+
"python",
|
484 |
+
"-m",
|
485 |
+
"model_worker",
|
486 |
+
"--host",
|
487 |
+
"0.0.0.0",
|
488 |
+
"--controller",
|
489 |
+
"http://localhost:10000",
|
490 |
+
"--load-bf16",
|
491 |
+
"--model-name",
|
492 |
+
"llava-rlhf-13b-v1.5-336",
|
493 |
+
"--model-path",
|
494 |
+
"daviddaytw/Dr-LLaVA-sft",
|
495 |
+
"--lora-path",
|
496 |
+
"daviddaytw/Dr-LLaVA-lora-adapter",
|
497 |
+
]
|
498 |
+
return subprocess.Popen(worker_command)
|
499 |
+
|
500 |
+
def get_args():
|
501 |
+
parser = argparse.ArgumentParser()
|
502 |
+
parser.add_argument("--host", type=str, default="0.0.0.0")
|
503 |
+
parser.add_argument("--port", type=int)
|
504 |
+
parser.add_argument("--controller-url", type=str, default="http://localhost:10000")
|
505 |
+
parser.add_argument("--concurrency-count", type=int, default=16)
|
506 |
+
parser.add_argument(
|
507 |
+
"--model-list-mode", type=str, default="reload", choices=["once", "reload"]
|
508 |
+
)
|
509 |
+
parser.add_argument("--share", action="store_true")
|
510 |
+
parser.add_argument("--moderate", action="store_true")
|
511 |
+
parser.add_argument("--embed", action="store_true")
|
512 |
+
args = parser.parse_args()
|
513 |
+
|
514 |
+
return args
|
515 |
+
|
516 |
+
|
517 |
+
def start_demo(args):
|
518 |
+
demo = build_demo(args.embed)
|
519 |
+
demo.queue(
|
520 |
+
concurrency_count=args.concurrency_count, status_update_rate=10, api_open=False
|
521 |
+
).launch(server_name=args.host, server_port=args.port, share=args.share)
|
522 |
|
523 |
|
524 |
if __name__ == "__main__":
|
525 |
+
args = get_args()
|
526 |
+
logger.info(f"args: {args}")
|
527 |
+
|
528 |
+
controller_proc = start_controller()
|
529 |
+
worker_proc = start_worker()
|
530 |
+
|
531 |
+
# Wait for worker and controller to start
|
532 |
+
time.sleep(10)
|
533 |
+
|
534 |
+
exit_status = 0
|
535 |
+
try:
|
536 |
+
start_demo(args)
|
537 |
+
except Exception as e:
|
538 |
+
print(e)
|
539 |
+
exit_status = 1
|
540 |
+
finally:
|
541 |
+
worker_proc.kill()
|
542 |
+
controller_proc.kill()
|
543 |
+
|
544 |
+
sys.exit(exit_status)
|
constants.py
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
CONTROLLER_HEART_BEAT_EXPIRATION = 30
|
2 |
+
WORKER_HEART_BEAT_INTERVAL = 15
|
3 |
+
|
4 |
+
LOGDIR = "."
|
5 |
+
|
6 |
+
# Model Constants
|
7 |
+
IGNORE_INDEX = -100
|
8 |
+
IMAGE_TOKEN_INDEX = -200
|
9 |
+
DEFAULT_IMAGE_TOKEN = "<image>"
|
10 |
+
DEFAULT_IMAGE_PATCH_TOKEN = "<im_patch>"
|
11 |
+
DEFAULT_IM_START_TOKEN = "<im_start>"
|
12 |
+
DEFAULT_IM_END_TOKEN = "<im_end>"
|
13 |
+
IMAGE_PLACEHOLDER = "<image-placeholder>"
|
controller.py
ADDED
@@ -0,0 +1,298 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
A controller manages distributed workers.
|
3 |
+
It sends worker addresses to clients.
|
4 |
+
"""
|
5 |
+
import argparse
|
6 |
+
import asyncio
|
7 |
+
import dataclasses
|
8 |
+
from enum import Enum, auto
|
9 |
+
import json
|
10 |
+
import logging
|
11 |
+
import time
|
12 |
+
from typing import List, Union
|
13 |
+
import threading
|
14 |
+
|
15 |
+
from fastapi import FastAPI, Request
|
16 |
+
from fastapi.responses import StreamingResponse
|
17 |
+
import numpy as np
|
18 |
+
import requests
|
19 |
+
import uvicorn
|
20 |
+
|
21 |
+
from constants import CONTROLLER_HEART_BEAT_EXPIRATION
|
22 |
+
from utils import build_logger, server_error_msg
|
23 |
+
|
24 |
+
|
25 |
+
logger = build_logger("controller", "controller.log")
|
26 |
+
|
27 |
+
|
28 |
+
class DispatchMethod(Enum):
|
29 |
+
LOTTERY = auto()
|
30 |
+
SHORTEST_QUEUE = auto()
|
31 |
+
|
32 |
+
@classmethod
|
33 |
+
def from_str(cls, name):
|
34 |
+
if name == "lottery":
|
35 |
+
return cls.LOTTERY
|
36 |
+
elif name == "shortest_queue":
|
37 |
+
return cls.SHORTEST_QUEUE
|
38 |
+
else:
|
39 |
+
raise ValueError(f"Invalid dispatch method")
|
40 |
+
|
41 |
+
|
42 |
+
@dataclasses.dataclass
|
43 |
+
class WorkerInfo:
|
44 |
+
model_names: List[str]
|
45 |
+
speed: int
|
46 |
+
queue_length: int
|
47 |
+
check_heart_beat: bool
|
48 |
+
last_heart_beat: str
|
49 |
+
|
50 |
+
|
51 |
+
def heart_beat_controller(controller):
|
52 |
+
while True:
|
53 |
+
time.sleep(CONTROLLER_HEART_BEAT_EXPIRATION)
|
54 |
+
controller.remove_stable_workers_by_expiration()
|
55 |
+
|
56 |
+
|
57 |
+
class Controller:
|
58 |
+
def __init__(self, dispatch_method: str):
|
59 |
+
# Dict[str -> WorkerInfo]
|
60 |
+
self.worker_info = {}
|
61 |
+
self.dispatch_method = DispatchMethod.from_str(dispatch_method)
|
62 |
+
|
63 |
+
self.heart_beat_thread = threading.Thread(
|
64 |
+
target=heart_beat_controller, args=(self,), daemon=True)
|
65 |
+
self.heart_beat_thread.start()
|
66 |
+
|
67 |
+
logger.info("Init controller")
|
68 |
+
|
69 |
+
def register_worker(self, worker_name: str, check_heart_beat: bool,
|
70 |
+
worker_status: dict):
|
71 |
+
if worker_name not in self.worker_info:
|
72 |
+
logger.info(f"Register a new worker: {worker_name}")
|
73 |
+
else:
|
74 |
+
logger.info(f"Register an existing worker: {worker_name}")
|
75 |
+
|
76 |
+
if not worker_status:
|
77 |
+
worker_status = self.get_worker_status(worker_name)
|
78 |
+
if not worker_status:
|
79 |
+
return False
|
80 |
+
|
81 |
+
self.worker_info[worker_name] = WorkerInfo(
|
82 |
+
worker_status["model_names"], worker_status["speed"], worker_status["queue_length"],
|
83 |
+
check_heart_beat, time.time())
|
84 |
+
|
85 |
+
logger.info(f"Register done: {worker_name}, {worker_status}")
|
86 |
+
return True
|
87 |
+
|
88 |
+
def get_worker_status(self, worker_name: str):
|
89 |
+
try:
|
90 |
+
r = requests.post(worker_name + "/worker_get_status", timeout=5)
|
91 |
+
except requests.exceptions.RequestException as e:
|
92 |
+
logger.error(f"Get status fails: {worker_name}, {e}")
|
93 |
+
return None
|
94 |
+
|
95 |
+
if r.status_code != 200:
|
96 |
+
logger.error(f"Get status fails: {worker_name}, {r}")
|
97 |
+
return None
|
98 |
+
|
99 |
+
return r.json()
|
100 |
+
|
101 |
+
def remove_worker(self, worker_name: str):
|
102 |
+
del self.worker_info[worker_name]
|
103 |
+
|
104 |
+
def refresh_all_workers(self):
|
105 |
+
old_info = dict(self.worker_info)
|
106 |
+
self.worker_info = {}
|
107 |
+
|
108 |
+
for w_name, w_info in old_info.items():
|
109 |
+
if not self.register_worker(w_name, w_info.check_heart_beat, None):
|
110 |
+
logger.info(f"Remove stale worker: {w_name}")
|
111 |
+
|
112 |
+
def list_models(self):
|
113 |
+
model_names = set()
|
114 |
+
|
115 |
+
for w_name, w_info in self.worker_info.items():
|
116 |
+
model_names.update(w_info.model_names)
|
117 |
+
|
118 |
+
return list(model_names)
|
119 |
+
|
120 |
+
def get_worker_address(self, model_name: str):
|
121 |
+
if self.dispatch_method == DispatchMethod.LOTTERY:
|
122 |
+
worker_names = []
|
123 |
+
worker_speeds = []
|
124 |
+
for w_name, w_info in self.worker_info.items():
|
125 |
+
if model_name in w_info.model_names:
|
126 |
+
worker_names.append(w_name)
|
127 |
+
worker_speeds.append(w_info.speed)
|
128 |
+
worker_speeds = np.array(worker_speeds, dtype=np.float32)
|
129 |
+
norm = np.sum(worker_speeds)
|
130 |
+
if norm < 1e-4:
|
131 |
+
return ""
|
132 |
+
worker_speeds = worker_speeds / norm
|
133 |
+
if True: # Directly return address
|
134 |
+
pt = np.random.choice(np.arange(len(worker_names)),
|
135 |
+
p=worker_speeds)
|
136 |
+
worker_name = worker_names[pt]
|
137 |
+
return worker_name
|
138 |
+
|
139 |
+
# Check status before returning
|
140 |
+
while True:
|
141 |
+
pt = np.random.choice(np.arange(len(worker_names)),
|
142 |
+
p=worker_speeds)
|
143 |
+
worker_name = worker_names[pt]
|
144 |
+
|
145 |
+
if self.get_worker_status(worker_name):
|
146 |
+
break
|
147 |
+
else:
|
148 |
+
self.remove_worker(worker_name)
|
149 |
+
worker_speeds[pt] = 0
|
150 |
+
norm = np.sum(worker_speeds)
|
151 |
+
if norm < 1e-4:
|
152 |
+
return ""
|
153 |
+
worker_speeds = worker_speeds / norm
|
154 |
+
continue
|
155 |
+
return worker_name
|
156 |
+
elif self.dispatch_method == DispatchMethod.SHORTEST_QUEUE:
|
157 |
+
worker_names = []
|
158 |
+
worker_qlen = []
|
159 |
+
for w_name, w_info in self.worker_info.items():
|
160 |
+
if model_name in w_info.model_names:
|
161 |
+
worker_names.append(w_name)
|
162 |
+
worker_qlen.append(w_info.queue_length / w_info.speed)
|
163 |
+
if len(worker_names) == 0:
|
164 |
+
return ""
|
165 |
+
min_index = np.argmin(worker_qlen)
|
166 |
+
w_name = worker_names[min_index]
|
167 |
+
self.worker_info[w_name].queue_length += 1
|
168 |
+
logger.info(f"names: {worker_names}, queue_lens: {worker_qlen}, ret: {w_name}")
|
169 |
+
return w_name
|
170 |
+
else:
|
171 |
+
raise ValueError(f"Invalid dispatch method: {self.dispatch_method}")
|
172 |
+
|
173 |
+
def receive_heart_beat(self, worker_name: str, queue_length: int):
|
174 |
+
if worker_name not in self.worker_info:
|
175 |
+
logger.info(f"Receive unknown heart beat. {worker_name}")
|
176 |
+
return False
|
177 |
+
|
178 |
+
self.worker_info[worker_name].queue_length = queue_length
|
179 |
+
self.worker_info[worker_name].last_heart_beat = time.time()
|
180 |
+
logger.info(f"Receive heart beat. {worker_name}")
|
181 |
+
return True
|
182 |
+
|
183 |
+
def remove_stable_workers_by_expiration(self):
|
184 |
+
expire = time.time() - CONTROLLER_HEART_BEAT_EXPIRATION
|
185 |
+
to_delete = []
|
186 |
+
for worker_name, w_info in self.worker_info.items():
|
187 |
+
if w_info.check_heart_beat and w_info.last_heart_beat < expire:
|
188 |
+
to_delete.append(worker_name)
|
189 |
+
|
190 |
+
for worker_name in to_delete:
|
191 |
+
self.remove_worker(worker_name)
|
192 |
+
|
193 |
+
def worker_api_generate_stream(self, params):
|
194 |
+
worker_addr = self.get_worker_address(params["model"])
|
195 |
+
if not worker_addr:
|
196 |
+
logger.info(f"no worker: {params['model']}")
|
197 |
+
ret = {
|
198 |
+
"text": server_error_msg,
|
199 |
+
"error_code": 2,
|
200 |
+
}
|
201 |
+
yield json.dumps(ret).encode() + b"\0"
|
202 |
+
|
203 |
+
try:
|
204 |
+
response = requests.post(worker_addr + "/worker_generate_stream",
|
205 |
+
json=params, stream=True, timeout=5)
|
206 |
+
for chunk in response.iter_lines(decode_unicode=False, delimiter=b"\0"):
|
207 |
+
if chunk:
|
208 |
+
yield chunk + b"\0"
|
209 |
+
except requests.exceptions.RequestException as e:
|
210 |
+
logger.info(f"worker timeout: {worker_addr}")
|
211 |
+
ret = {
|
212 |
+
"text": server_error_msg,
|
213 |
+
"error_code": 3,
|
214 |
+
}
|
215 |
+
yield json.dumps(ret).encode() + b"\0"
|
216 |
+
|
217 |
+
|
218 |
+
# Let the controller act as a worker to achieve hierarchical
|
219 |
+
# management. This can be used to connect isolated sub networks.
|
220 |
+
def worker_api_get_status(self):
|
221 |
+
model_names = set()
|
222 |
+
speed = 0
|
223 |
+
queue_length = 0
|
224 |
+
|
225 |
+
for w_name in self.worker_info:
|
226 |
+
worker_status = self.get_worker_status(w_name)
|
227 |
+
if worker_status is not None:
|
228 |
+
model_names.update(worker_status["model_names"])
|
229 |
+
speed += worker_status["speed"]
|
230 |
+
queue_length += worker_status["queue_length"]
|
231 |
+
|
232 |
+
return {
|
233 |
+
"model_names": list(model_names),
|
234 |
+
"speed": speed,
|
235 |
+
"queue_length": queue_length,
|
236 |
+
}
|
237 |
+
|
238 |
+
|
239 |
+
app = FastAPI()
|
240 |
+
|
241 |
+
|
242 |
+
@app.post("/register_worker")
|
243 |
+
async def register_worker(request: Request):
|
244 |
+
data = await request.json()
|
245 |
+
controller.register_worker(
|
246 |
+
data["worker_name"], data["check_heart_beat"],
|
247 |
+
data.get("worker_status", None))
|
248 |
+
|
249 |
+
|
250 |
+
@app.post("/refresh_all_workers")
|
251 |
+
async def refresh_all_workers():
|
252 |
+
models = controller.refresh_all_workers()
|
253 |
+
|
254 |
+
|
255 |
+
@app.post("/list_models")
|
256 |
+
async def list_models():
|
257 |
+
models = controller.list_models()
|
258 |
+
return {"models": models}
|
259 |
+
|
260 |
+
|
261 |
+
@app.post("/get_worker_address")
|
262 |
+
async def get_worker_address(request: Request):
|
263 |
+
data = await request.json()
|
264 |
+
addr = controller.get_worker_address(data["model"])
|
265 |
+
return {"address": addr}
|
266 |
+
|
267 |
+
|
268 |
+
@app.post("/receive_heart_beat")
|
269 |
+
async def receive_heart_beat(request: Request):
|
270 |
+
data = await request.json()
|
271 |
+
exist = controller.receive_heart_beat(
|
272 |
+
data["worker_name"], data["queue_length"])
|
273 |
+
return {"exist": exist}
|
274 |
+
|
275 |
+
|
276 |
+
@app.post("/worker_generate_stream")
|
277 |
+
async def worker_api_generate_stream(request: Request):
|
278 |
+
params = await request.json()
|
279 |
+
generator = controller.worker_api_generate_stream(params)
|
280 |
+
return StreamingResponse(generator)
|
281 |
+
|
282 |
+
|
283 |
+
@app.post("/worker_get_status")
|
284 |
+
async def worker_api_get_status(request: Request):
|
285 |
+
return controller.worker_api_get_status()
|
286 |
+
|
287 |
+
|
288 |
+
if __name__ == "__main__":
|
289 |
+
parser = argparse.ArgumentParser()
|
290 |
+
parser.add_argument("--host", type=str, default="localhost")
|
291 |
+
parser.add_argument("--port", type=int, default=21001)
|
292 |
+
parser.add_argument("--dispatch-method", type=str, choices=[
|
293 |
+
"lottery", "shortest_queue"], default="shortest_queue")
|
294 |
+
args = parser.parse_args()
|
295 |
+
logger.info(f"args: {args}")
|
296 |
+
|
297 |
+
controller = Controller(args.dispatch_method)
|
298 |
+
uvicorn.run(app, host=args.host, port=args.port, log_level="info")
|
conversation.py
ADDED
@@ -0,0 +1,396 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import dataclasses
|
2 |
+
from enum import auto, Enum
|
3 |
+
from typing import List, Tuple
|
4 |
+
import base64
|
5 |
+
from io import BytesIO
|
6 |
+
from PIL import Image
|
7 |
+
|
8 |
+
|
9 |
+
class SeparatorStyle(Enum):
|
10 |
+
"""Different separator style."""
|
11 |
+
SINGLE = auto()
|
12 |
+
TWO = auto()
|
13 |
+
MPT = auto()
|
14 |
+
PLAIN = auto()
|
15 |
+
LLAMA_2 = auto()
|
16 |
+
|
17 |
+
|
18 |
+
@dataclasses.dataclass
|
19 |
+
class Conversation:
|
20 |
+
"""A class that keeps all conversation history."""
|
21 |
+
system: str
|
22 |
+
roles: List[str]
|
23 |
+
messages: List[List[str]]
|
24 |
+
offset: int
|
25 |
+
sep_style: SeparatorStyle = SeparatorStyle.SINGLE
|
26 |
+
sep: str = "###"
|
27 |
+
sep2: str = None
|
28 |
+
version: str = "Unknown"
|
29 |
+
|
30 |
+
skip_next: bool = False
|
31 |
+
|
32 |
+
def get_prompt(self):
|
33 |
+
messages = self.messages
|
34 |
+
if len(messages) > 0 and type(messages[0][1]) is tuple:
|
35 |
+
messages = self.messages.copy()
|
36 |
+
init_role, init_msg = messages[0].copy()
|
37 |
+
init_msg = init_msg[0].replace("<image>", "").strip()
|
38 |
+
if 'mmtag' in self.version:
|
39 |
+
messages[0] = (init_role, init_msg)
|
40 |
+
messages.insert(0, (self.roles[0], "<Image><image></Image>"))
|
41 |
+
messages.insert(1, (self.roles[1], "Received."))
|
42 |
+
else:
|
43 |
+
messages[0] = (init_role, "<image>\n" + init_msg)
|
44 |
+
|
45 |
+
if self.sep_style == SeparatorStyle.SINGLE:
|
46 |
+
ret = self.system + self.sep
|
47 |
+
for role, message in messages:
|
48 |
+
if message:
|
49 |
+
if type(message) is tuple:
|
50 |
+
message, _, _ = message
|
51 |
+
ret += role + ": " + message + self.sep
|
52 |
+
else:
|
53 |
+
ret += role + ":"
|
54 |
+
elif self.sep_style == SeparatorStyle.TWO:
|
55 |
+
seps = [self.sep, self.sep2]
|
56 |
+
ret = self.system + seps[0]
|
57 |
+
for i, (role, message) in enumerate(messages):
|
58 |
+
if message:
|
59 |
+
if type(message) is tuple:
|
60 |
+
message, _, _ = message
|
61 |
+
ret += role + ": " + message + seps[i % 2]
|
62 |
+
else:
|
63 |
+
ret += role + ":"
|
64 |
+
elif self.sep_style == SeparatorStyle.MPT:
|
65 |
+
ret = self.system + self.sep
|
66 |
+
for role, message in messages:
|
67 |
+
if message:
|
68 |
+
if type(message) is tuple:
|
69 |
+
message, _, _ = message
|
70 |
+
ret += role + message + self.sep
|
71 |
+
else:
|
72 |
+
ret += role
|
73 |
+
elif self.sep_style == SeparatorStyle.LLAMA_2:
|
74 |
+
wrap_sys = lambda msg: f"<<SYS>>\n{msg}\n<</SYS>>\n\n" if len(msg) > 0 else msg
|
75 |
+
wrap_inst = lambda msg: f"[INST] {msg} [/INST]"
|
76 |
+
ret = ""
|
77 |
+
|
78 |
+
for i, (role, message) in enumerate(messages):
|
79 |
+
if i == 0:
|
80 |
+
assert message, "first message should not be none"
|
81 |
+
assert role == self.roles[0], "first message should come from user"
|
82 |
+
if message:
|
83 |
+
if type(message) is tuple:
|
84 |
+
message, _, _ = message
|
85 |
+
if i == 0: message = wrap_sys(self.system) + message
|
86 |
+
if i % 2 == 0:
|
87 |
+
message = wrap_inst(message)
|
88 |
+
ret += self.sep + message
|
89 |
+
else:
|
90 |
+
ret += " " + message + " " + self.sep2
|
91 |
+
else:
|
92 |
+
ret += ""
|
93 |
+
ret = ret.lstrip(self.sep)
|
94 |
+
elif self.sep_style == SeparatorStyle.PLAIN:
|
95 |
+
seps = [self.sep, self.sep2]
|
96 |
+
ret = self.system
|
97 |
+
for i, (role, message) in enumerate(messages):
|
98 |
+
if message:
|
99 |
+
if type(message) is tuple:
|
100 |
+
message, _, _ = message
|
101 |
+
ret += message + seps[i % 2]
|
102 |
+
else:
|
103 |
+
ret += ""
|
104 |
+
else:
|
105 |
+
raise ValueError(f"Invalid style: {self.sep_style}")
|
106 |
+
|
107 |
+
return ret
|
108 |
+
|
109 |
+
def append_message(self, role, message):
|
110 |
+
self.messages.append([role, message])
|
111 |
+
|
112 |
+
def process_image(self, image, image_process_mode, return_pil=False, image_format='PNG', max_len=1344, min_len=672):
|
113 |
+
if image_process_mode == "Pad":
|
114 |
+
def expand2square(pil_img, background_color=(122, 116, 104)):
|
115 |
+
width, height = pil_img.size
|
116 |
+
if width == height:
|
117 |
+
return pil_img
|
118 |
+
elif width > height:
|
119 |
+
result = Image.new(pil_img.mode, (width, width), background_color)
|
120 |
+
result.paste(pil_img, (0, (width - height) // 2))
|
121 |
+
return result
|
122 |
+
else:
|
123 |
+
result = Image.new(pil_img.mode, (height, height), background_color)
|
124 |
+
result.paste(pil_img, ((height - width) // 2, 0))
|
125 |
+
return result
|
126 |
+
image = expand2square(image)
|
127 |
+
elif image_process_mode in ["Default", "Crop"]:
|
128 |
+
pass
|
129 |
+
elif image_process_mode == "Resize":
|
130 |
+
image = image.resize((336, 336))
|
131 |
+
else:
|
132 |
+
raise ValueError(f"Invalid image_process_mode: {image_process_mode}")
|
133 |
+
if max(image.size) > max_len:
|
134 |
+
max_hw, min_hw = max(image.size), min(image.size)
|
135 |
+
aspect_ratio = max_hw / min_hw
|
136 |
+
shortest_edge = int(min(max_len / aspect_ratio, min_len, min_hw))
|
137 |
+
longest_edge = int(shortest_edge * aspect_ratio)
|
138 |
+
W, H = image.size
|
139 |
+
if H > W:
|
140 |
+
H, W = longest_edge, shortest_edge
|
141 |
+
else:
|
142 |
+
H, W = shortest_edge, longest_edge
|
143 |
+
image = image.resize((W, H))
|
144 |
+
if return_pil:
|
145 |
+
return image
|
146 |
+
else:
|
147 |
+
buffered = BytesIO()
|
148 |
+
image.save(buffered, format=image_format)
|
149 |
+
img_b64_str = base64.b64encode(buffered.getvalue()).decode()
|
150 |
+
return img_b64_str
|
151 |
+
|
152 |
+
def get_images(self, return_pil=False):
|
153 |
+
images = []
|
154 |
+
for i, (role, msg) in enumerate(self.messages[self.offset:]):
|
155 |
+
if i % 2 == 0:
|
156 |
+
if type(msg) is tuple:
|
157 |
+
msg, image, image_process_mode = msg
|
158 |
+
image = self.process_image(image, image_process_mode, return_pil=return_pil)
|
159 |
+
images.append(image)
|
160 |
+
return images
|
161 |
+
|
162 |
+
def to_gradio_chatbot(self):
|
163 |
+
ret = []
|
164 |
+
for i, (role, msg) in enumerate(self.messages[self.offset:]):
|
165 |
+
if i % 2 == 0:
|
166 |
+
if type(msg) is tuple:
|
167 |
+
msg, image, image_process_mode = msg
|
168 |
+
img_b64_str = self.process_image(
|
169 |
+
image, "Default", return_pil=False,
|
170 |
+
image_format='JPEG')
|
171 |
+
img_str = f'<img src="data:image/jpeg;base64,{img_b64_str}" alt="user upload image" />'
|
172 |
+
msg = img_str + msg.replace('<image>', '').strip()
|
173 |
+
ret.append([msg, None])
|
174 |
+
else:
|
175 |
+
ret.append([msg, None])
|
176 |
+
else:
|
177 |
+
ret[-1][-1] = msg
|
178 |
+
return ret
|
179 |
+
|
180 |
+
def copy(self):
|
181 |
+
return Conversation(
|
182 |
+
system=self.system,
|
183 |
+
roles=self.roles,
|
184 |
+
messages=[[x, y] for x, y in self.messages],
|
185 |
+
offset=self.offset,
|
186 |
+
sep_style=self.sep_style,
|
187 |
+
sep=self.sep,
|
188 |
+
sep2=self.sep2,
|
189 |
+
version=self.version)
|
190 |
+
|
191 |
+
def dict(self):
|
192 |
+
if len(self.get_images()) > 0:
|
193 |
+
return {
|
194 |
+
"system": self.system,
|
195 |
+
"roles": self.roles,
|
196 |
+
"messages": [[x, y[0] if type(y) is tuple else y] for x, y in self.messages],
|
197 |
+
"offset": self.offset,
|
198 |
+
"sep": self.sep,
|
199 |
+
"sep2": self.sep2,
|
200 |
+
}
|
201 |
+
return {
|
202 |
+
"system": self.system,
|
203 |
+
"roles": self.roles,
|
204 |
+
"messages": self.messages,
|
205 |
+
"offset": self.offset,
|
206 |
+
"sep": self.sep,
|
207 |
+
"sep2": self.sep2,
|
208 |
+
}
|
209 |
+
|
210 |
+
|
211 |
+
conv_vicuna_v0 = Conversation(
|
212 |
+
system="A chat between a curious human and an artificial intelligence assistant. "
|
213 |
+
"The assistant gives helpful, detailed, and polite answers to the human's questions.",
|
214 |
+
roles=("Human", "Assistant"),
|
215 |
+
messages=(
|
216 |
+
("Human", "What are the key differences between renewable and non-renewable energy sources?"),
|
217 |
+
("Assistant",
|
218 |
+
"Renewable energy sources are those that can be replenished naturally in a relatively "
|
219 |
+
"short amount of time, such as solar, wind, hydro, geothermal, and biomass. "
|
220 |
+
"Non-renewable energy sources, on the other hand, are finite and will eventually be "
|
221 |
+
"depleted, such as coal, oil, and natural gas. Here are some key differences between "
|
222 |
+
"renewable and non-renewable energy sources:\n"
|
223 |
+
"1. Availability: Renewable energy sources are virtually inexhaustible, while non-renewable "
|
224 |
+
"energy sources are finite and will eventually run out.\n"
|
225 |
+
"2. Environmental impact: Renewable energy sources have a much lower environmental impact "
|
226 |
+
"than non-renewable sources, which can lead to air and water pollution, greenhouse gas emissions, "
|
227 |
+
"and other negative effects.\n"
|
228 |
+
"3. Cost: Renewable energy sources can be more expensive to initially set up, but they typically "
|
229 |
+
"have lower operational costs than non-renewable sources.\n"
|
230 |
+
"4. Reliability: Renewable energy sources are often more reliable and can be used in more remote "
|
231 |
+
"locations than non-renewable sources.\n"
|
232 |
+
"5. Flexibility: Renewable energy sources are often more flexible and can be adapted to different "
|
233 |
+
"situations and needs, while non-renewable sources are more rigid and inflexible.\n"
|
234 |
+
"6. Sustainability: Renewable energy sources are more sustainable over the long term, while "
|
235 |
+
"non-renewable sources are not, and their depletion can lead to economic and social instability.\n")
|
236 |
+
),
|
237 |
+
offset=2,
|
238 |
+
sep_style=SeparatorStyle.SINGLE,
|
239 |
+
sep="###",
|
240 |
+
)
|
241 |
+
|
242 |
+
conv_vicuna_v1 = Conversation(
|
243 |
+
system="A chat between a curious user and an artificial intelligence assistant. "
|
244 |
+
"The assistant gives helpful, detailed, and polite answers to the user's questions.",
|
245 |
+
roles=("USER", "ASSISTANT"),
|
246 |
+
version="v1",
|
247 |
+
messages=(),
|
248 |
+
offset=0,
|
249 |
+
sep_style=SeparatorStyle.TWO,
|
250 |
+
sep=" ",
|
251 |
+
sep2="</s>",
|
252 |
+
)
|
253 |
+
|
254 |
+
conv_llama_2 = Conversation(
|
255 |
+
system="""You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature.
|
256 |
+
|
257 |
+
If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information.""",
|
258 |
+
roles=("USER", "ASSISTANT"),
|
259 |
+
version="llama_v2",
|
260 |
+
messages=(),
|
261 |
+
offset=0,
|
262 |
+
sep_style=SeparatorStyle.LLAMA_2,
|
263 |
+
sep="<s>",
|
264 |
+
sep2="</s>",
|
265 |
+
)
|
266 |
+
|
267 |
+
conv_llava_llama_2 = Conversation(
|
268 |
+
system="You are a helpful language and vision assistant. "
|
269 |
+
"You are able to understand the visual content that the user provides, "
|
270 |
+
"and assist the user with a variety of tasks using natural language.",
|
271 |
+
roles=("USER", "ASSISTANT"),
|
272 |
+
version="llama_v2",
|
273 |
+
messages=(),
|
274 |
+
offset=0,
|
275 |
+
sep_style=SeparatorStyle.LLAMA_2,
|
276 |
+
sep="<s>",
|
277 |
+
sep2="</s>",
|
278 |
+
)
|
279 |
+
|
280 |
+
conv_mpt = Conversation(
|
281 |
+
system="""<|im_start|>system
|
282 |
+
A conversation between a user and an LLM-based AI assistant. The assistant gives helpful and honest answers.""",
|
283 |
+
roles=("<|im_start|>user\n", "<|im_start|>assistant\n"),
|
284 |
+
version="mpt",
|
285 |
+
messages=(),
|
286 |
+
offset=0,
|
287 |
+
sep_style=SeparatorStyle.MPT,
|
288 |
+
sep="<|im_end|>",
|
289 |
+
)
|
290 |
+
|
291 |
+
conv_llava_plain = Conversation(
|
292 |
+
system="",
|
293 |
+
roles=("", ""),
|
294 |
+
messages=(
|
295 |
+
),
|
296 |
+
offset=0,
|
297 |
+
sep_style=SeparatorStyle.PLAIN,
|
298 |
+
sep="\n",
|
299 |
+
)
|
300 |
+
|
301 |
+
conv_llava_v0 = Conversation(
|
302 |
+
system="A chat between a curious human and an artificial intelligence assistant. "
|
303 |
+
"The assistant gives helpful, detailed, and polite answers to the human's questions.",
|
304 |
+
roles=("Human", "Assistant"),
|
305 |
+
messages=(
|
306 |
+
),
|
307 |
+
offset=0,
|
308 |
+
sep_style=SeparatorStyle.SINGLE,
|
309 |
+
sep="###",
|
310 |
+
)
|
311 |
+
|
312 |
+
conv_llava_v0_mmtag = Conversation(
|
313 |
+
system="A chat between a curious user and an artificial intelligence assistant. "
|
314 |
+
"The assistant is able to understand the visual content that the user provides, and assist the user with a variety of tasks using natural language."
|
315 |
+
"The visual content will be provided with the following format: <Image>visual content</Image>.",
|
316 |
+
roles=("Human", "Assistant"),
|
317 |
+
messages=(
|
318 |
+
),
|
319 |
+
offset=0,
|
320 |
+
sep_style=SeparatorStyle.SINGLE,
|
321 |
+
sep="###",
|
322 |
+
version="v0_mmtag",
|
323 |
+
)
|
324 |
+
|
325 |
+
conv_llava_v1 = Conversation(
|
326 |
+
system="A chat between a curious human and an artificial intelligence assistant. "
|
327 |
+
"The assistant gives helpful, detailed, and polite answers to the human's questions.",
|
328 |
+
roles=("USER", "ASSISTANT"),
|
329 |
+
version="v1",
|
330 |
+
messages=(),
|
331 |
+
offset=0,
|
332 |
+
sep_style=SeparatorStyle.TWO,
|
333 |
+
sep=" ",
|
334 |
+
sep2="</s>",
|
335 |
+
)
|
336 |
+
|
337 |
+
conv_llava_v1_mmtag = Conversation(
|
338 |
+
system="A chat between a curious user and an artificial intelligence assistant. "
|
339 |
+
"The assistant is able to understand the visual content that the user provides, and assist the user with a variety of tasks using natural language."
|
340 |
+
"The visual content will be provided with the following format: <Image>visual content</Image>.",
|
341 |
+
roles=("USER", "ASSISTANT"),
|
342 |
+
messages=(),
|
343 |
+
offset=0,
|
344 |
+
sep_style=SeparatorStyle.TWO,
|
345 |
+
sep=" ",
|
346 |
+
sep2="</s>",
|
347 |
+
version="v1_mmtag",
|
348 |
+
)
|
349 |
+
|
350 |
+
conv_mistral_instruct = Conversation(
|
351 |
+
system="",
|
352 |
+
roles=("USER", "ASSISTANT"),
|
353 |
+
version="llama_v2",
|
354 |
+
messages=(),
|
355 |
+
offset=0,
|
356 |
+
sep_style=SeparatorStyle.LLAMA_2,
|
357 |
+
sep="",
|
358 |
+
sep2="</s>",
|
359 |
+
)
|
360 |
+
|
361 |
+
conv_chatml_direct = Conversation(
|
362 |
+
system="""<|im_start|>system
|
363 |
+
Answer the questions.""",
|
364 |
+
roles=("<|im_start|>user\n", "<|im_start|>assistant\n"),
|
365 |
+
version="mpt",
|
366 |
+
messages=(),
|
367 |
+
offset=0,
|
368 |
+
sep_style=SeparatorStyle.MPT,
|
369 |
+
sep="<|im_end|>",
|
370 |
+
)
|
371 |
+
|
372 |
+
default_conversation = conv_vicuna_v1
|
373 |
+
conv_templates = {
|
374 |
+
"default": conv_vicuna_v0,
|
375 |
+
"v0": conv_vicuna_v0,
|
376 |
+
"v1": conv_vicuna_v1,
|
377 |
+
"vicuna_v1": conv_vicuna_v1,
|
378 |
+
"llama_2": conv_llama_2,
|
379 |
+
"mistral_instruct": conv_mistral_instruct,
|
380 |
+
"chatml_direct": conv_chatml_direct,
|
381 |
+
"mistral_direct": conv_chatml_direct,
|
382 |
+
|
383 |
+
"plain": conv_llava_plain,
|
384 |
+
"v0_plain": conv_llava_plain,
|
385 |
+
"llava_v0": conv_llava_v0,
|
386 |
+
"v0_mmtag": conv_llava_v0_mmtag,
|
387 |
+
"llava_v1": conv_llava_v1,
|
388 |
+
"v1_mmtag": conv_llava_v1_mmtag,
|
389 |
+
"llava_llama_2": conv_llava_llama_2,
|
390 |
+
|
391 |
+
"mpt": conv_mpt,
|
392 |
+
}
|
393 |
+
|
394 |
+
|
395 |
+
if __name__ == "__main__":
|
396 |
+
print(default_conversation.get_prompt())
|
examples/example1.jpeg
ADDED
examples/example2.jpeg
ADDED
llava/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
from .model import LlavaLlamaForCausalLM
|
llava/constants.py
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
CONTROLLER_HEART_BEAT_EXPIRATION = 30
|
2 |
+
WORKER_HEART_BEAT_INTERVAL = 15
|
3 |
+
|
4 |
+
LOGDIR = "."
|
5 |
+
|
6 |
+
# Model Constants
|
7 |
+
IGNORE_INDEX = -100
|
8 |
+
IMAGE_TOKEN_INDEX = -200
|
9 |
+
DEFAULT_IMAGE_TOKEN = "<image>"
|
10 |
+
DEFAULT_IMAGE_PATCH_TOKEN = "<im_patch>"
|
11 |
+
DEFAULT_IM_START_TOKEN = "<im_start>"
|
12 |
+
DEFAULT_IM_END_TOKEN = "<im_end>"
|
llava/conversation.py
ADDED
@@ -0,0 +1,381 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import dataclasses
|
2 |
+
from enum import auto, Enum
|
3 |
+
from typing import List, Tuple
|
4 |
+
|
5 |
+
|
6 |
+
class SeparatorStyle(Enum):
|
7 |
+
"""Different separator style."""
|
8 |
+
SINGLE = auto()
|
9 |
+
TWO = auto()
|
10 |
+
MPT = auto()
|
11 |
+
PLAIN = auto()
|
12 |
+
LLAMA_2 = auto()
|
13 |
+
|
14 |
+
|
15 |
+
@dataclasses.dataclass
|
16 |
+
class Conversation:
|
17 |
+
"""A class that keeps all conversation history."""
|
18 |
+
system: str
|
19 |
+
roles: List[str]
|
20 |
+
messages: List[List[str]]
|
21 |
+
offset: int
|
22 |
+
sep_style: SeparatorStyle = SeparatorStyle.SINGLE
|
23 |
+
sep: str = "###"
|
24 |
+
sep2: str = None
|
25 |
+
version: str = "Unknown"
|
26 |
+
|
27 |
+
skip_next: bool = False
|
28 |
+
|
29 |
+
def get_prompt(self):
|
30 |
+
messages = self.messages
|
31 |
+
if len(messages) > 0 and type(messages[0][1]) is tuple:
|
32 |
+
messages = self.messages.copy()
|
33 |
+
init_role, init_msg = messages[0].copy()
|
34 |
+
init_msg = init_msg[0].replace("<image>", "").strip()
|
35 |
+
if 'mmtag' in self.version:
|
36 |
+
messages[0] = (init_role, init_msg)
|
37 |
+
messages.insert(0, (self.roles[0], "<Image><image></Image>"))
|
38 |
+
messages.insert(1, (self.roles[1], "Received."))
|
39 |
+
else:
|
40 |
+
messages[0] = (init_role, "<image>\n" + init_msg)
|
41 |
+
|
42 |
+
if self.sep_style == SeparatorStyle.SINGLE:
|
43 |
+
ret = self.system + self.sep
|
44 |
+
for role, message in messages:
|
45 |
+
if message:
|
46 |
+
if type(message) is tuple:
|
47 |
+
message, _, _ = message
|
48 |
+
ret += role + ": " + message + self.sep
|
49 |
+
else:
|
50 |
+
ret += role + ":"
|
51 |
+
elif self.sep_style == SeparatorStyle.TWO:
|
52 |
+
seps = [self.sep, self.sep2]
|
53 |
+
ret = self.system + seps[0]
|
54 |
+
for i, (role, message) in enumerate(messages):
|
55 |
+
if message:
|
56 |
+
if type(message) is tuple:
|
57 |
+
message, _, _ = message
|
58 |
+
ret += role + ": " + message + seps[i % 2]
|
59 |
+
else:
|
60 |
+
ret += role + ":"
|
61 |
+
elif self.sep_style == SeparatorStyle.MPT:
|
62 |
+
ret = self.system + self.sep
|
63 |
+
for role, message in messages:
|
64 |
+
if message:
|
65 |
+
if type(message) is tuple:
|
66 |
+
message, _, _ = message
|
67 |
+
ret += role + message + self.sep
|
68 |
+
else:
|
69 |
+
ret += role
|
70 |
+
elif self.sep_style == SeparatorStyle.LLAMA_2:
|
71 |
+
wrap_sys = lambda msg: f"<<SYS>>\n{msg}\n<</SYS>>\n\n"
|
72 |
+
wrap_inst = lambda msg: f"[INST] {msg} [/INST]"
|
73 |
+
ret = ""
|
74 |
+
|
75 |
+
for i, (role, message) in enumerate(messages):
|
76 |
+
if i == 0:
|
77 |
+
assert message, "first message should not be none"
|
78 |
+
assert role == self.roles[0], "first message should come from user"
|
79 |
+
if message:
|
80 |
+
if type(message) is tuple:
|
81 |
+
message, _, _ = message
|
82 |
+
if i == 0: message = wrap_sys(self.system) + message
|
83 |
+
if i % 2 == 0:
|
84 |
+
message = wrap_inst(message)
|
85 |
+
ret += self.sep + message
|
86 |
+
else:
|
87 |
+
ret += " " + message + " " + self.sep2
|
88 |
+
else:
|
89 |
+
ret += ""
|
90 |
+
ret = ret.lstrip(self.sep)
|
91 |
+
elif self.sep_style == SeparatorStyle.PLAIN:
|
92 |
+
seps = [self.sep, self.sep2]
|
93 |
+
ret = self.system
|
94 |
+
for i, (role, message) in enumerate(messages):
|
95 |
+
if message:
|
96 |
+
if type(message) is tuple:
|
97 |
+
message, _, _ = message
|
98 |
+
ret += message + seps[i % 2]
|
99 |
+
else:
|
100 |
+
ret += ""
|
101 |
+
else:
|
102 |
+
raise ValueError(f"Invalid style: {self.sep_style}")
|
103 |
+
|
104 |
+
return ret
|
105 |
+
|
106 |
+
def append_message(self, role, message):
|
107 |
+
self.messages.append([role, message])
|
108 |
+
|
109 |
+
def get_images(self, return_pil=False):
|
110 |
+
images = []
|
111 |
+
for i, (role, msg) in enumerate(self.messages[self.offset:]):
|
112 |
+
if i % 2 == 0:
|
113 |
+
if type(msg) is tuple:
|
114 |
+
import base64
|
115 |
+
from io import BytesIO
|
116 |
+
from PIL import Image
|
117 |
+
msg, image, image_process_mode = msg
|
118 |
+
if image_process_mode == "Pad":
|
119 |
+
def expand2square(pil_img, background_color=(122, 116, 104)):
|
120 |
+
width, height = pil_img.size
|
121 |
+
if width == height:
|
122 |
+
return pil_img
|
123 |
+
elif width > height:
|
124 |
+
result = Image.new(pil_img.mode, (width, width), background_color)
|
125 |
+
result.paste(pil_img, (0, (width - height) // 2))
|
126 |
+
return result
|
127 |
+
else:
|
128 |
+
result = Image.new(pil_img.mode, (height, height), background_color)
|
129 |
+
result.paste(pil_img, ((height - width) // 2, 0))
|
130 |
+
return result
|
131 |
+
image = expand2square(image)
|
132 |
+
elif image_process_mode in ["Default", "Crop"]:
|
133 |
+
pass
|
134 |
+
elif image_process_mode == "Resize":
|
135 |
+
image = image.resize((336, 336))
|
136 |
+
else:
|
137 |
+
raise ValueError(f"Invalid image_process_mode: {image_process_mode}")
|
138 |
+
max_hw, min_hw = max(image.size), min(image.size)
|
139 |
+
aspect_ratio = max_hw / min_hw
|
140 |
+
max_len, min_len = 800, 400
|
141 |
+
shortest_edge = int(min(max_len / aspect_ratio, min_len, min_hw))
|
142 |
+
longest_edge = int(shortest_edge * aspect_ratio)
|
143 |
+
W, H = image.size
|
144 |
+
if longest_edge != max(image.size):
|
145 |
+
if H > W:
|
146 |
+
H, W = longest_edge, shortest_edge
|
147 |
+
else:
|
148 |
+
H, W = shortest_edge, longest_edge
|
149 |
+
image = image.resize((W, H))
|
150 |
+
if return_pil:
|
151 |
+
images.append(image)
|
152 |
+
else:
|
153 |
+
buffered = BytesIO()
|
154 |
+
image.save(buffered, format="PNG")
|
155 |
+
img_b64_str = base64.b64encode(buffered.getvalue()).decode()
|
156 |
+
images.append(img_b64_str)
|
157 |
+
return images
|
158 |
+
|
159 |
+
def to_gradio_chatbot(self):
|
160 |
+
ret = []
|
161 |
+
for i, (role, msg) in enumerate(self.messages[self.offset:]):
|
162 |
+
if i % 2 == 0:
|
163 |
+
if type(msg) is tuple:
|
164 |
+
import base64
|
165 |
+
from io import BytesIO
|
166 |
+
msg, image, image_process_mode = msg
|
167 |
+
max_hw, min_hw = max(image.size), min(image.size)
|
168 |
+
aspect_ratio = max_hw / min_hw
|
169 |
+
max_len, min_len = 800, 400
|
170 |
+
shortest_edge = int(min(max_len / aspect_ratio, min_len, min_hw))
|
171 |
+
longest_edge = int(shortest_edge * aspect_ratio)
|
172 |
+
W, H = image.size
|
173 |
+
if H > W:
|
174 |
+
H, W = longest_edge, shortest_edge
|
175 |
+
else:
|
176 |
+
H, W = shortest_edge, longest_edge
|
177 |
+
image = image.resize((W, H))
|
178 |
+
buffered = BytesIO()
|
179 |
+
image.save(buffered, format="JPEG")
|
180 |
+
img_b64_str = base64.b64encode(buffered.getvalue()).decode()
|
181 |
+
img_str = f'<img src="data:image/png;base64,{img_b64_str}" alt="user upload image" />'
|
182 |
+
msg = img_str + msg.replace('<image>', '').strip()
|
183 |
+
ret.append([msg, None])
|
184 |
+
else:
|
185 |
+
ret.append([msg, None])
|
186 |
+
else:
|
187 |
+
ret[-1][-1] = msg
|
188 |
+
return ret
|
189 |
+
|
190 |
+
def copy(self):
|
191 |
+
return Conversation(
|
192 |
+
system=self.system,
|
193 |
+
roles=self.roles,
|
194 |
+
messages=[[x, y] for x, y in self.messages],
|
195 |
+
offset=self.offset,
|
196 |
+
sep_style=self.sep_style,
|
197 |
+
sep=self.sep,
|
198 |
+
sep2=self.sep2,
|
199 |
+
version=self.version)
|
200 |
+
|
201 |
+
def dict(self):
|
202 |
+
if len(self.get_images()) > 0:
|
203 |
+
return {
|
204 |
+
"system": self.system,
|
205 |
+
"roles": self.roles,
|
206 |
+
"messages": [[x, y[0] if type(y) is tuple else y] for x, y in self.messages],
|
207 |
+
"offset": self.offset,
|
208 |
+
"sep": self.sep,
|
209 |
+
"sep2": self.sep2,
|
210 |
+
}
|
211 |
+
return {
|
212 |
+
"system": self.system,
|
213 |
+
"roles": self.roles,
|
214 |
+
"messages": self.messages,
|
215 |
+
"offset": self.offset,
|
216 |
+
"sep": self.sep,
|
217 |
+
"sep2": self.sep2,
|
218 |
+
}
|
219 |
+
|
220 |
+
|
221 |
+
conv_vicuna_v0 = Conversation(
|
222 |
+
system="A chat between a curious human and an artificial intelligence assistant. "
|
223 |
+
"The assistant gives helpful, detailed, and polite answers to the human's questions.",
|
224 |
+
roles=("Human", "Assistant"),
|
225 |
+
messages=(
|
226 |
+
("Human", "What are the key differences between renewable and non-renewable energy sources?"),
|
227 |
+
("Assistant",
|
228 |
+
"Renewable energy sources are those that can be replenished naturally in a relatively "
|
229 |
+
"short amount of time, such as solar, wind, hydro, geothermal, and biomass. "
|
230 |
+
"Non-renewable energy sources, on the other hand, are finite and will eventually be "
|
231 |
+
"depleted, such as coal, oil, and natural gas. Here are some key differences between "
|
232 |
+
"renewable and non-renewable energy sources:\n"
|
233 |
+
"1. Availability: Renewable energy sources are virtually inexhaustible, while non-renewable "
|
234 |
+
"energy sources are finite and will eventually run out.\n"
|
235 |
+
"2. Environmental impact: Renewable energy sources have a much lower environmental impact "
|
236 |
+
"than non-renewable sources, which can lead to air and water pollution, greenhouse gas emissions, "
|
237 |
+
"and other negative effects.\n"
|
238 |
+
"3. Cost: Renewable energy sources can be more expensive to initially set up, but they typically "
|
239 |
+
"have lower operational costs than non-renewable sources.\n"
|
240 |
+
"4. Reliability: Renewable energy sources are often more reliable and can be used in more remote "
|
241 |
+
"locations than non-renewable sources.\n"
|
242 |
+
"5. Flexibility: Renewable energy sources are often more flexible and can be adapted to different "
|
243 |
+
"situations and needs, while non-renewable sources are more rigid and inflexible.\n"
|
244 |
+
"6. Sustainability: Renewable energy sources are more sustainable over the long term, while "
|
245 |
+
"non-renewable sources are not, and their depletion can lead to economic and social instability.\n")
|
246 |
+
),
|
247 |
+
offset=2,
|
248 |
+
sep_style=SeparatorStyle.SINGLE,
|
249 |
+
sep="###",
|
250 |
+
)
|
251 |
+
|
252 |
+
conv_vicuna_v1 = Conversation(
|
253 |
+
system="A chat between a curious user and an artificial intelligence assistant. "
|
254 |
+
"The assistant gives helpful, detailed, and polite answers to the user's questions.",
|
255 |
+
roles=("USER", "ASSISTANT"),
|
256 |
+
version="v1",
|
257 |
+
messages=(),
|
258 |
+
offset=0,
|
259 |
+
sep_style=SeparatorStyle.TWO,
|
260 |
+
sep=" ",
|
261 |
+
sep2="</s>",
|
262 |
+
)
|
263 |
+
|
264 |
+
conv_llama_2 = Conversation(
|
265 |
+
system="""You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature.
|
266 |
+
|
267 |
+
If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information.""",
|
268 |
+
roles=("USER", "ASSISTANT"),
|
269 |
+
version="llama_v2",
|
270 |
+
messages=(),
|
271 |
+
offset=0,
|
272 |
+
sep_style=SeparatorStyle.LLAMA_2,
|
273 |
+
sep="<s>",
|
274 |
+
sep2="</s>",
|
275 |
+
)
|
276 |
+
|
277 |
+
conv_llava_llama_2 = Conversation(
|
278 |
+
system="You are a helpful language and vision assistant. "
|
279 |
+
"You are able to understand the visual content that the user provides, "
|
280 |
+
"and assist the user with a variety of tasks using natural language.",
|
281 |
+
roles=("USER", "ASSISTANT"),
|
282 |
+
version="llama_v2",
|
283 |
+
messages=(),
|
284 |
+
offset=0,
|
285 |
+
sep_style=SeparatorStyle.LLAMA_2,
|
286 |
+
sep="<s>",
|
287 |
+
sep2="</s>",
|
288 |
+
)
|
289 |
+
|
290 |
+
conv_mpt = Conversation(
|
291 |
+
system="""<|im_start|>system
|
292 |
+
A conversation between a user and an LLM-based AI assistant. The assistant gives helpful and honest answers.""",
|
293 |
+
roles=("<|im_start|>user\n", "<|im_start|>assistant\n"),
|
294 |
+
version="mpt",
|
295 |
+
messages=(),
|
296 |
+
offset=0,
|
297 |
+
sep_style=SeparatorStyle.MPT,
|
298 |
+
sep="<|im_end|>",
|
299 |
+
)
|
300 |
+
|
301 |
+
conv_llava_plain = Conversation(
|
302 |
+
system="",
|
303 |
+
roles=("", ""),
|
304 |
+
messages=(
|
305 |
+
),
|
306 |
+
offset=0,
|
307 |
+
sep_style=SeparatorStyle.PLAIN,
|
308 |
+
sep="\n",
|
309 |
+
)
|
310 |
+
|
311 |
+
conv_llava_v0 = Conversation(
|
312 |
+
system="A chat between a curious human and an artificial intelligence assistant. "
|
313 |
+
"The assistant gives helpful, detailed, and polite answers to the human's questions.",
|
314 |
+
roles=("Human", "Assistant"),
|
315 |
+
messages=(
|
316 |
+
),
|
317 |
+
offset=0,
|
318 |
+
sep_style=SeparatorStyle.SINGLE,
|
319 |
+
sep="###",
|
320 |
+
)
|
321 |
+
|
322 |
+
conv_llava_v0_mmtag = Conversation(
|
323 |
+
system="A chat between a curious user and an artificial intelligence assistant. "
|
324 |
+
"The assistant is able to understand the visual content that the user provides, and assist the user with a variety of tasks using natural language."
|
325 |
+
"The visual content will be provided with the following format: <Image>visual content</Image>.",
|
326 |
+
roles=("Human", "Assistant"),
|
327 |
+
messages=(
|
328 |
+
),
|
329 |
+
offset=0,
|
330 |
+
sep_style=SeparatorStyle.SINGLE,
|
331 |
+
sep="###",
|
332 |
+
version="v0_mmtag",
|
333 |
+
)
|
334 |
+
|
335 |
+
conv_llava_v1 = Conversation(
|
336 |
+
system="A chat between a curious human and an artificial intelligence assistant. "
|
337 |
+
"The assistant gives helpful, detailed, and polite answers to the human's questions.",
|
338 |
+
roles=("USER", "ASSISTANT"),
|
339 |
+
version="v1",
|
340 |
+
messages=(),
|
341 |
+
offset=0,
|
342 |
+
sep_style=SeparatorStyle.TWO,
|
343 |
+
sep=" ",
|
344 |
+
sep2="</s>",
|
345 |
+
)
|
346 |
+
|
347 |
+
conv_llava_v1_mmtag = Conversation(
|
348 |
+
system="A chat between a curious user and an artificial intelligence assistant. "
|
349 |
+
"The assistant is able to understand the visual content that the user provides, and assist the user with a variety of tasks using natural language."
|
350 |
+
"The visual content will be provided with the following format: <Image>visual content</Image>.",
|
351 |
+
roles=("USER", "ASSISTANT"),
|
352 |
+
messages=(),
|
353 |
+
offset=0,
|
354 |
+
sep_style=SeparatorStyle.TWO,
|
355 |
+
sep=" ",
|
356 |
+
sep2="</s>",
|
357 |
+
version="v1_mmtag",
|
358 |
+
)
|
359 |
+
|
360 |
+
default_conversation = conv_vicuna_v0
|
361 |
+
conv_templates = {
|
362 |
+
"default": conv_vicuna_v0,
|
363 |
+
"v0": conv_vicuna_v0,
|
364 |
+
"v1": conv_vicuna_v1,
|
365 |
+
"vicuna_v1": conv_vicuna_v1,
|
366 |
+
"llama_2": conv_llama_2,
|
367 |
+
|
368 |
+
"plain": conv_llava_plain,
|
369 |
+
"v0_plain": conv_llava_plain,
|
370 |
+
"llava_v0": conv_llava_v0,
|
371 |
+
"v0_mmtag": conv_llava_v0_mmtag,
|
372 |
+
"llava_v1": conv_llava_v1,
|
373 |
+
"v1_mmtag": conv_llava_v1_mmtag,
|
374 |
+
"llava_llama_2": conv_llava_llama_2,
|
375 |
+
|
376 |
+
"mpt": conv_mpt,
|
377 |
+
}
|
378 |
+
|
379 |
+
|
380 |
+
if __name__ == "__main__":
|
381 |
+
print(default_conversation.get_prompt())
|
llava/eval/eval_gpt_review.py
ADDED
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import json
|
3 |
+
import os
|
4 |
+
|
5 |
+
import openai
|
6 |
+
import tqdm
|
7 |
+
import ray
|
8 |
+
import time
|
9 |
+
|
10 |
+
NUM_SECONDS_TO_SLEEP = 3
|
11 |
+
|
12 |
+
@ray.remote(num_cpus=4)
|
13 |
+
def get_eval(content: str, max_tokens: int):
|
14 |
+
while True:
|
15 |
+
try:
|
16 |
+
response = openai.ChatCompletion.create(
|
17 |
+
model='gpt-4',
|
18 |
+
messages=[{
|
19 |
+
'role': 'system',
|
20 |
+
'content': 'You are a helpful and precise assistant for checking the quality of the answer.'
|
21 |
+
}, {
|
22 |
+
'role': 'user',
|
23 |
+
'content': content,
|
24 |
+
}],
|
25 |
+
temperature=0.2, # TODO: figure out which temperature is best for evaluation
|
26 |
+
max_tokens=max_tokens,
|
27 |
+
)
|
28 |
+
break
|
29 |
+
except openai.error.RateLimitError:
|
30 |
+
pass
|
31 |
+
except Exception as e:
|
32 |
+
print(e)
|
33 |
+
time.sleep(NUM_SECONDS_TO_SLEEP)
|
34 |
+
|
35 |
+
print('success!')
|
36 |
+
return response['choices'][0]['message']['content']
|
37 |
+
|
38 |
+
|
39 |
+
def parse_score(review):
|
40 |
+
try:
|
41 |
+
score_pair = review.split('\n')[0]
|
42 |
+
score_pair = score_pair.replace(',', ' ')
|
43 |
+
sp = score_pair.split(' ')
|
44 |
+
if len(sp) == 2:
|
45 |
+
return [float(sp[0]), float(sp[1])]
|
46 |
+
else:
|
47 |
+
print('error', review)
|
48 |
+
return [-1, -1]
|
49 |
+
except Exception as e:
|
50 |
+
print(e)
|
51 |
+
print('error', review)
|
52 |
+
return [-1, -1]
|
53 |
+
|
54 |
+
|
55 |
+
if __name__ == '__main__':
|
56 |
+
parser = argparse.ArgumentParser(description='ChatGPT-based QA evaluation.')
|
57 |
+
parser.add_argument('-q', '--question')
|
58 |
+
# parser.add_argument('-a', '--answer')
|
59 |
+
parser.add_argument('-a', '--answer-list', nargs='+', default=[])
|
60 |
+
parser.add_argument('-r', '--rule')
|
61 |
+
parser.add_argument('-o', '--output')
|
62 |
+
parser.add_argument('--max-tokens', type=int, default=1024, help='maximum number of tokens produced in the output')
|
63 |
+
args = parser.parse_args()
|
64 |
+
|
65 |
+
ray.init()
|
66 |
+
|
67 |
+
f_q = open(os.path.expanduser(args.question))
|
68 |
+
f_ans1 = open(os.path.expanduser(args.answer_list[0]))
|
69 |
+
f_ans2 = open(os.path.expanduser(args.answer_list[1]))
|
70 |
+
rule_dict = json.load(open(os.path.expanduser(args.rule), 'r'))
|
71 |
+
|
72 |
+
review_file = open(f'{args.output}', 'w')
|
73 |
+
|
74 |
+
js_list = []
|
75 |
+
handles = []
|
76 |
+
idx = 0
|
77 |
+
for ques_js, ans1_js, ans2_js in zip(f_q, f_ans1, f_ans2):
|
78 |
+
# if idx == 1:
|
79 |
+
# break
|
80 |
+
|
81 |
+
ques = json.loads(ques_js)
|
82 |
+
ans1 = json.loads(ans1_js)
|
83 |
+
ans2 = json.loads(ans2_js)
|
84 |
+
|
85 |
+
category = json.loads(ques_js)['category']
|
86 |
+
if category in rule_dict:
|
87 |
+
rule = rule_dict[category]
|
88 |
+
else:
|
89 |
+
rule = rule_dict['default']
|
90 |
+
prompt = rule['prompt']
|
91 |
+
role = rule['role']
|
92 |
+
content = (f'[Question]\n{ques["text"]}\n\n'
|
93 |
+
f'[{role} 1]\n{ans1["text"]}\n\n[End of {role} 1]\n\n'
|
94 |
+
f'[{role} 2]\n{ans2["text"]}\n\n[End of {role} 2]\n\n'
|
95 |
+
f'[System]\n{prompt}\n\n')
|
96 |
+
js_list.append({
|
97 |
+
'id': idx+1,
|
98 |
+
'question_id': ques['question_id'],
|
99 |
+
'answer1_id': ans1['answer_id'],
|
100 |
+
'answer2_id': ans2['answer_id'],
|
101 |
+
'category': category})
|
102 |
+
idx += 1
|
103 |
+
handles.append(get_eval.remote(content, args.max_tokens))
|
104 |
+
# To avoid the rate limit set by OpenAI
|
105 |
+
time.sleep(NUM_SECONDS_TO_SLEEP)
|
106 |
+
|
107 |
+
reviews = ray.get(handles)
|
108 |
+
for idx, review in enumerate(reviews):
|
109 |
+
scores = parse_score(review)
|
110 |
+
js_list[idx]['content'] = review
|
111 |
+
js_list[idx]['tuple'] = scores
|
112 |
+
review_file.write(json.dumps(js_list[idx]) + '\n')
|
113 |
+
review_file.close()
|
llava/eval/eval_gpt_review_bench.py
ADDED
@@ -0,0 +1,121 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import json
|
3 |
+
import os
|
4 |
+
|
5 |
+
import openai
|
6 |
+
import time
|
7 |
+
|
8 |
+
NUM_SECONDS_TO_SLEEP = 0.5
|
9 |
+
|
10 |
+
|
11 |
+
def get_eval(content: str, max_tokens: int):
|
12 |
+
while True:
|
13 |
+
try:
|
14 |
+
response = openai.ChatCompletion.create(
|
15 |
+
model='gpt-4-0314',
|
16 |
+
messages=[{
|
17 |
+
'role': 'system',
|
18 |
+
'content': 'You are a helpful and precise assistant for checking the quality of the answer.'
|
19 |
+
}, {
|
20 |
+
'role': 'user',
|
21 |
+
'content': content,
|
22 |
+
}],
|
23 |
+
temperature=0.2, # TODO: figure out which temperature is best for evaluation
|
24 |
+
max_tokens=max_tokens,
|
25 |
+
)
|
26 |
+
break
|
27 |
+
except openai.error.RateLimitError:
|
28 |
+
pass
|
29 |
+
except Exception as e:
|
30 |
+
print(e)
|
31 |
+
time.sleep(NUM_SECONDS_TO_SLEEP)
|
32 |
+
|
33 |
+
return response['choices'][0]['message']['content']
|
34 |
+
|
35 |
+
|
36 |
+
def parse_score(review):
|
37 |
+
try:
|
38 |
+
score_pair = review.split('\n')[0]
|
39 |
+
score_pair = score_pair.replace(',', ' ')
|
40 |
+
sp = score_pair.split(' ')
|
41 |
+
if len(sp) == 2:
|
42 |
+
return [float(sp[0]), float(sp[1])]
|
43 |
+
else:
|
44 |
+
print('error', review)
|
45 |
+
return [-1, -1]
|
46 |
+
except Exception as e:
|
47 |
+
print(e)
|
48 |
+
print('error', review)
|
49 |
+
return [-1, -1]
|
50 |
+
|
51 |
+
|
52 |
+
if __name__ == '__main__':
|
53 |
+
parser = argparse.ArgumentParser(description='ChatGPT-based QA evaluation.')
|
54 |
+
parser.add_argument('-q', '--question')
|
55 |
+
parser.add_argument('-c', '--context')
|
56 |
+
parser.add_argument('-a', '--answer-list', nargs='+', default=[])
|
57 |
+
parser.add_argument('-r', '--rule')
|
58 |
+
parser.add_argument('-o', '--output')
|
59 |
+
parser.add_argument('--max-tokens', type=int, default=1024, help='maximum number of tokens produced in the output')
|
60 |
+
args = parser.parse_args()
|
61 |
+
|
62 |
+
f_q = open(os.path.expanduser(args.question))
|
63 |
+
f_ans1 = open(os.path.expanduser(args.answer_list[0]))
|
64 |
+
f_ans2 = open(os.path.expanduser(args.answer_list[1]))
|
65 |
+
rule_dict = json.load(open(os.path.expanduser(args.rule), 'r'))
|
66 |
+
|
67 |
+
if os.path.isfile(os.path.expanduser(args.output)):
|
68 |
+
cur_reviews = [json.loads(line) for line in open(os.path.expanduser(args.output))]
|
69 |
+
else:
|
70 |
+
cur_reviews = []
|
71 |
+
|
72 |
+
review_file = open(f'{args.output}', 'a')
|
73 |
+
|
74 |
+
context_list = [json.loads(line) for line in open(os.path.expanduser(args.context))]
|
75 |
+
image_to_context = {context['image']: context for context in context_list}
|
76 |
+
|
77 |
+
handles = []
|
78 |
+
idx = 0
|
79 |
+
for ques_js, ans1_js, ans2_js in zip(f_q, f_ans1, f_ans2):
|
80 |
+
ques = json.loads(ques_js)
|
81 |
+
ans1 = json.loads(ans1_js)
|
82 |
+
ans2 = json.loads(ans2_js)
|
83 |
+
|
84 |
+
inst = image_to_context[ques['image']]
|
85 |
+
|
86 |
+
if isinstance(inst['caption'], list):
|
87 |
+
cap_str = '\n'.join(inst['caption'])
|
88 |
+
else:
|
89 |
+
cap_str = inst['caption']
|
90 |
+
|
91 |
+
category = 'llava_bench_' + json.loads(ques_js)['category']
|
92 |
+
if category in rule_dict:
|
93 |
+
rule = rule_dict[category]
|
94 |
+
else:
|
95 |
+
assert False, f"Visual QA category not found in rule file: {category}."
|
96 |
+
prompt = rule['prompt']
|
97 |
+
role = rule['role']
|
98 |
+
content = (f'[Context]\n{cap_str}\n\n'
|
99 |
+
f'[Question]\n{ques["text"]}\n\n'
|
100 |
+
f'[{role} 1]\n{ans1["text"]}\n\n[End of {role} 1]\n\n'
|
101 |
+
f'[{role} 2]\n{ans2["text"]}\n\n[End of {role} 2]\n\n'
|
102 |
+
f'[System]\n{prompt}\n\n')
|
103 |
+
cur_js = {
|
104 |
+
'id': idx+1,
|
105 |
+
'question_id': ques['question_id'],
|
106 |
+
'answer1_id': ans1.get('answer_id', ans1['question_id']),
|
107 |
+
'answer2_id': ans2.get('answer_id', ans2['answer_id']),
|
108 |
+
'category': category
|
109 |
+
}
|
110 |
+
if idx >= len(cur_reviews):
|
111 |
+
review = get_eval(content, args.max_tokens)
|
112 |
+
scores = parse_score(review)
|
113 |
+
cur_js['content'] = review
|
114 |
+
cur_js['tuple'] = scores
|
115 |
+
review_file.write(json.dumps(cur_js) + '\n')
|
116 |
+
review_file.flush()
|
117 |
+
else:
|
118 |
+
print(f'Skipping {idx} as we already have it.')
|
119 |
+
idx += 1
|
120 |
+
print(idx)
|
121 |
+
review_file.close()
|
llava/eval/eval_gpt_review_visual.py
ADDED
@@ -0,0 +1,118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import json
|
3 |
+
import os
|
4 |
+
|
5 |
+
import openai
|
6 |
+
import time
|
7 |
+
|
8 |
+
NUM_SECONDS_TO_SLEEP = 0.5
|
9 |
+
|
10 |
+
|
11 |
+
def get_eval(content: str, max_tokens: int):
|
12 |
+
while True:
|
13 |
+
try:
|
14 |
+
response = openai.ChatCompletion.create(
|
15 |
+
model='gpt-4-0314',
|
16 |
+
messages=[{
|
17 |
+
'role': 'system',
|
18 |
+
'content': 'You are a helpful and precise assistant for checking the quality of the answer.'
|
19 |
+
}, {
|
20 |
+
'role': 'user',
|
21 |
+
'content': content,
|
22 |
+
}],
|
23 |
+
temperature=0.2, # TODO: figure out which temperature is best for evaluation
|
24 |
+
max_tokens=max_tokens,
|
25 |
+
)
|
26 |
+
break
|
27 |
+
except openai.error.RateLimitError:
|
28 |
+
pass
|
29 |
+
except Exception as e:
|
30 |
+
print(e)
|
31 |
+
time.sleep(NUM_SECONDS_TO_SLEEP)
|
32 |
+
|
33 |
+
return response['choices'][0]['message']['content']
|
34 |
+
|
35 |
+
|
36 |
+
def parse_score(review):
|
37 |
+
try:
|
38 |
+
score_pair = review.split('\n')[0]
|
39 |
+
score_pair = score_pair.replace(',', ' ')
|
40 |
+
sp = score_pair.split(' ')
|
41 |
+
if len(sp) == 2:
|
42 |
+
return [float(sp[0]), float(sp[1])]
|
43 |
+
else:
|
44 |
+
print('error', review)
|
45 |
+
return [-1, -1]
|
46 |
+
except Exception as e:
|
47 |
+
print(e)
|
48 |
+
print('error', review)
|
49 |
+
return [-1, -1]
|
50 |
+
|
51 |
+
|
52 |
+
if __name__ == '__main__':
|
53 |
+
parser = argparse.ArgumentParser(description='ChatGPT-based QA evaluation.')
|
54 |
+
parser.add_argument('-q', '--question')
|
55 |
+
parser.add_argument('-c', '--context')
|
56 |
+
parser.add_argument('-a', '--answer-list', nargs='+', default=[])
|
57 |
+
parser.add_argument('-r', '--rule')
|
58 |
+
parser.add_argument('-o', '--output')
|
59 |
+
parser.add_argument('--max-tokens', type=int, default=1024, help='maximum number of tokens produced in the output')
|
60 |
+
args = parser.parse_args()
|
61 |
+
|
62 |
+
f_q = open(os.path.expanduser(args.question))
|
63 |
+
f_ans1 = open(os.path.expanduser(args.answer_list[0]))
|
64 |
+
f_ans2 = open(os.path.expanduser(args.answer_list[1]))
|
65 |
+
rule_dict = json.load(open(os.path.expanduser(args.rule), 'r'))
|
66 |
+
|
67 |
+
if os.path.isfile(os.path.expanduser(args.output)):
|
68 |
+
cur_reviews = [json.loads(line) for line in open(os.path.expanduser(args.output))]
|
69 |
+
else:
|
70 |
+
cur_reviews = []
|
71 |
+
|
72 |
+
review_file = open(f'{args.output}', 'a')
|
73 |
+
|
74 |
+
context_list = [json.loads(line) for line in open(os.path.expanduser(args.context))]
|
75 |
+
image_to_context = {context['image']: context for context in context_list}
|
76 |
+
|
77 |
+
handles = []
|
78 |
+
idx = 0
|
79 |
+
for ques_js, ans1_js, ans2_js in zip(f_q, f_ans1, f_ans2):
|
80 |
+
ques = json.loads(ques_js)
|
81 |
+
ans1 = json.loads(ans1_js)
|
82 |
+
ans2 = json.loads(ans2_js)
|
83 |
+
|
84 |
+
inst = image_to_context[ques['image']]
|
85 |
+
cap_str = '\n'.join(inst['captions'])
|
86 |
+
box_str = '\n'.join([f'{instance["category"]}: {instance["bbox"]}' for instance in inst['instances']])
|
87 |
+
|
88 |
+
category = json.loads(ques_js)['category']
|
89 |
+
if category in rule_dict:
|
90 |
+
rule = rule_dict[category]
|
91 |
+
else:
|
92 |
+
assert False, f"Visual QA category not found in rule file: {category}."
|
93 |
+
prompt = rule['prompt']
|
94 |
+
role = rule['role']
|
95 |
+
content = (f'[Context]\n{cap_str}\n\n{box_str}\n\n'
|
96 |
+
f'[Question]\n{ques["text"]}\n\n'
|
97 |
+
f'[{role} 1]\n{ans1["text"]}\n\n[End of {role} 1]\n\n'
|
98 |
+
f'[{role} 2]\n{ans2["text"]}\n\n[End of {role} 2]\n\n'
|
99 |
+
f'[System]\n{prompt}\n\n')
|
100 |
+
cur_js = {
|
101 |
+
'id': idx+1,
|
102 |
+
'question_id': ques['question_id'],
|
103 |
+
'answer1_id': ans1.get('answer_id', ans1['question_id']),
|
104 |
+
'answer2_id': ans2.get('answer_id', ans2['answer_id']),
|
105 |
+
'category': category
|
106 |
+
}
|
107 |
+
if idx >= len(cur_reviews):
|
108 |
+
review = get_eval(content, args.max_tokens)
|
109 |
+
scores = parse_score(review)
|
110 |
+
cur_js['content'] = review
|
111 |
+
cur_js['tuple'] = scores
|
112 |
+
review_file.write(json.dumps(cur_js) + '\n')
|
113 |
+
review_file.flush()
|
114 |
+
else:
|
115 |
+
print(f'Skipping {idx} as we already have it.')
|
116 |
+
idx += 1
|
117 |
+
print(idx)
|
118 |
+
review_file.close()
|
llava/eval/eval_science_qa.py
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import json
|
3 |
+
import os
|
4 |
+
import re
|
5 |
+
import random
|
6 |
+
|
7 |
+
|
8 |
+
def get_args():
|
9 |
+
parser = argparse.ArgumentParser()
|
10 |
+
parser.add_argument('--base-dir', type=str)
|
11 |
+
parser.add_argument('--result-file', type=str)
|
12 |
+
parser.add_argument('--output-file', type=str)
|
13 |
+
parser.add_argument('--output-result', type=str)
|
14 |
+
parser.add_argument('--split', type=str, default='test')
|
15 |
+
parser.add_argument('--options', type=list, default=["A", "B", "C", "D", "E"])
|
16 |
+
return parser.parse_args()
|
17 |
+
|
18 |
+
|
19 |
+
def convert_caps(results):
|
20 |
+
fakecaps = []
|
21 |
+
for result in results:
|
22 |
+
image_id = result['question_id']
|
23 |
+
caption = result['text']
|
24 |
+
fakecaps.append({"image_id": int(image_id), "caption": caption})
|
25 |
+
return fakecaps
|
26 |
+
|
27 |
+
|
28 |
+
def get_pred_idx(prediction, choices, options):
|
29 |
+
"""
|
30 |
+
Get the index (e.g. 2) from the prediction (e.g. 'C')
|
31 |
+
"""
|
32 |
+
if prediction in options[:len(choices)]:
|
33 |
+
return options.index(prediction)
|
34 |
+
else:
|
35 |
+
return random.choice(range(len(choices)))
|
36 |
+
|
37 |
+
|
38 |
+
if __name__ == "__main__":
|
39 |
+
args = get_args()
|
40 |
+
|
41 |
+
base_dir = args.base_dir
|
42 |
+
split_indices = json.load(open(os.path.join(base_dir, "pid_splits.json")))[args.split]
|
43 |
+
problems = json.load(open(os.path.join(base_dir, "problems.json")))
|
44 |
+
predictions = [json.loads(line) for line in open(args.result_file)]
|
45 |
+
predictions = {pred['question_id']: pred for pred in predictions}
|
46 |
+
split_problems = {idx: problems[idx] for idx in split_indices}
|
47 |
+
|
48 |
+
results = {'correct': [], 'incorrect': []}
|
49 |
+
sqa_results = {}
|
50 |
+
sqa_results['acc'] = None
|
51 |
+
sqa_results['correct'] = None
|
52 |
+
sqa_results['count'] = None
|
53 |
+
sqa_results['results'] = {}
|
54 |
+
sqa_results['outputs'] = {}
|
55 |
+
|
56 |
+
for prob_id, prob in split_problems.items():
|
57 |
+
if prob_id not in predictions:
|
58 |
+
continue
|
59 |
+
pred = predictions[prob_id]
|
60 |
+
pred_text = pred['text']
|
61 |
+
|
62 |
+
pattern = re.compile(r'The answer is ([A-Z]).')
|
63 |
+
res = pattern.findall(pred_text)
|
64 |
+
if len(res) == 1:
|
65 |
+
answer = res[0] # 'A', 'B', ...
|
66 |
+
else:
|
67 |
+
answer = "FAILED"
|
68 |
+
|
69 |
+
pred_idx = get_pred_idx(answer, prob['choices'], args.options)
|
70 |
+
|
71 |
+
analysis = {
|
72 |
+
'question_id': prob_id,
|
73 |
+
'parsed_ans': answer,
|
74 |
+
'ground_truth': args.options[prob['answer']],
|
75 |
+
'question': pred['prompt'],
|
76 |
+
'pred': pred_text,
|
77 |
+
'is_multimodal': '<image>' in pred['prompt'],
|
78 |
+
}
|
79 |
+
|
80 |
+
sqa_results['results'][prob_id] = get_pred_idx(answer, prob['choices'], args.options)
|
81 |
+
sqa_results['outputs'][prob_id] = pred_text
|
82 |
+
|
83 |
+
if pred_idx == prob['answer']:
|
84 |
+
results['correct'].append(analysis)
|
85 |
+
else:
|
86 |
+
results['incorrect'].append(analysis)
|
87 |
+
|
88 |
+
correct = len(results['correct'])
|
89 |
+
total = len(results['correct']) + len(results['incorrect'])
|
90 |
+
print(f'Total: {total}, Correct: {correct}, Accuracy: {correct / total * 100:.2f}%')
|
91 |
+
|
92 |
+
sqa_results['acc'] = correct / total * 100
|
93 |
+
sqa_results['correct'] = correct
|
94 |
+
sqa_results['count'] = total
|
95 |
+
|
96 |
+
with open(args.output_file, 'w') as f:
|
97 |
+
json.dump(results, f, indent=2)
|
98 |
+
with open(args.output_result, 'w') as f:
|
99 |
+
json.dump(sqa_results, f, indent=2)
|
llava/eval/eval_science_qa_gpt4.py
ADDED
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import json
|
3 |
+
import os
|
4 |
+
import re
|
5 |
+
import random
|
6 |
+
from collections import defaultdict
|
7 |
+
|
8 |
+
|
9 |
+
def get_args():
|
10 |
+
parser = argparse.ArgumentParser()
|
11 |
+
parser.add_argument('--base-dir', type=str)
|
12 |
+
parser.add_argument('--gpt4-result', type=str)
|
13 |
+
parser.add_argument('--our-result', type=str)
|
14 |
+
parser.add_argument('--split', type=str, default='test')
|
15 |
+
parser.add_argument('--options', type=list, default=["A", "B", "C", "D", "E"])
|
16 |
+
return parser.parse_args()
|
17 |
+
|
18 |
+
|
19 |
+
def convert_caps(results):
|
20 |
+
fakecaps = []
|
21 |
+
for result in results:
|
22 |
+
image_id = result['question_id']
|
23 |
+
caption = result['text']
|
24 |
+
fakecaps.append({"image_id": int(image_id), "caption": caption})
|
25 |
+
return fakecaps
|
26 |
+
|
27 |
+
|
28 |
+
def get_pred_idx(prediction, choices, options):
|
29 |
+
"""
|
30 |
+
Get the index (e.g. 2) from the prediction (e.g. 'C')
|
31 |
+
"""
|
32 |
+
if prediction in options[:len(choices)]:
|
33 |
+
return options.index(prediction)
|
34 |
+
else:
|
35 |
+
return random.choice(range(len(choices)))
|
36 |
+
|
37 |
+
|
38 |
+
if __name__ == "__main__":
|
39 |
+
args = get_args()
|
40 |
+
|
41 |
+
base_dir = args.base_dir
|
42 |
+
split_indices = json.load(open(os.path.join(base_dir, "pid_splits.json")))[args.split]
|
43 |
+
problems = json.load(open(os.path.join(base_dir, "problems.json")))
|
44 |
+
our_predictions = [json.loads(line) for line in open(args.our_result)]
|
45 |
+
our_predictions = {pred['question_id']: pred for pred in our_predictions}
|
46 |
+
split_problems = {idx: problems[idx] for idx in split_indices}
|
47 |
+
|
48 |
+
gpt4_predictions = json.load(open(args.gpt4_result))['outputs']
|
49 |
+
|
50 |
+
results = defaultdict(lambda: 0)
|
51 |
+
|
52 |
+
for prob_id, prob in split_problems.items():
|
53 |
+
if prob_id not in our_predictions:
|
54 |
+
continue
|
55 |
+
if prob_id not in gpt4_predictions:
|
56 |
+
continue
|
57 |
+
our_pred = our_predictions[prob_id]['text']
|
58 |
+
gpt4_pred = gpt4_predictions[prob_id]
|
59 |
+
|
60 |
+
pattern = re.compile(r'The answer is ([A-Z]).')
|
61 |
+
our_res = pattern.findall(our_pred)
|
62 |
+
if len(our_res) == 1:
|
63 |
+
our_answer = our_res[0] # 'A', 'B', ...
|
64 |
+
else:
|
65 |
+
our_answer = "FAILED"
|
66 |
+
gpt4_res = pattern.findall(gpt4_pred)
|
67 |
+
if len(gpt4_res) == 1:
|
68 |
+
gpt4_answer = gpt4_res[0] # 'A', 'B', ...
|
69 |
+
else:
|
70 |
+
gpt4_answer = "FAILED"
|
71 |
+
|
72 |
+
our_pred_idx = get_pred_idx(our_answer, prob['choices'], args.options)
|
73 |
+
gpt4_pred_idx = get_pred_idx(gpt4_answer, prob['choices'], args.options)
|
74 |
+
|
75 |
+
if gpt4_answer == 'FAILED':
|
76 |
+
results['gpt4_failed'] += 1
|
77 |
+
# continue
|
78 |
+
gpt4_pred_idx = our_pred_idx
|
79 |
+
# if our_pred_idx != prob['answer']:
|
80 |
+
# print(our_predictions[prob_id]['prompt'])
|
81 |
+
# print('-----------------')
|
82 |
+
# print(f'LECTURE: {prob["lecture"]}')
|
83 |
+
# print(f'SOLUTION: {prob["solution"]}')
|
84 |
+
# print('=====================')
|
85 |
+
else:
|
86 |
+
# continue
|
87 |
+
pass
|
88 |
+
# gpt4_pred_idx = our_pred_idx
|
89 |
+
|
90 |
+
if gpt4_pred_idx == prob['answer']:
|
91 |
+
results['correct'] += 1
|
92 |
+
else:
|
93 |
+
results['incorrect'] += 1
|
94 |
+
|
95 |
+
|
96 |
+
if gpt4_pred_idx == prob['answer'] or our_pred_idx == prob['answer']:
|
97 |
+
results['correct_upperbound'] += 1
|
98 |
+
|
99 |
+
correct = results['correct']
|
100 |
+
total = results['correct'] + results['incorrect']
|
101 |
+
print(f'Total: {total}, Correct: {correct}, Accuracy: {correct / total * 100:.2f}%')
|
102 |
+
print(f'Total: {total}, Correct (upper): {results["correct_upperbound"]}, Accuracy: {results["correct_upperbound"] / total * 100:.2f}%')
|
103 |
+
print(f'Total: {total}, GPT-4 NO-ANS (RANDOM): {results["gpt4_failed"]}, Percentage: {results["gpt4_failed"] / total * 100:.2f}%')
|
104 |
+
|
llava/eval/eval_science_qa_gpt4_requery.py
ADDED
@@ -0,0 +1,149 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import json
|
3 |
+
import os
|
4 |
+
import re
|
5 |
+
import random
|
6 |
+
from collections import defaultdict
|
7 |
+
|
8 |
+
|
9 |
+
def get_args():
|
10 |
+
parser = argparse.ArgumentParser()
|
11 |
+
parser.add_argument('--base-dir', type=str)
|
12 |
+
parser.add_argument('--gpt4-result', type=str)
|
13 |
+
parser.add_argument('--requery-result', type=str)
|
14 |
+
parser.add_argument('--our-result', type=str)
|
15 |
+
parser.add_argument('--output-result', type=str)
|
16 |
+
parser.add_argument('--split', type=str, default='test')
|
17 |
+
parser.add_argument('--options', type=list, default=["A", "B", "C", "D", "E"])
|
18 |
+
return parser.parse_args()
|
19 |
+
|
20 |
+
|
21 |
+
def convert_caps(results):
|
22 |
+
fakecaps = []
|
23 |
+
for result in results:
|
24 |
+
image_id = result['question_id']
|
25 |
+
caption = result['text']
|
26 |
+
fakecaps.append({"image_id": int(image_id), "caption": caption})
|
27 |
+
return fakecaps
|
28 |
+
|
29 |
+
|
30 |
+
def get_pred_idx(prediction, choices, options):
|
31 |
+
"""
|
32 |
+
Get the index (e.g. 2) from the prediction (e.g. 'C')
|
33 |
+
"""
|
34 |
+
if prediction in options[:len(choices)]:
|
35 |
+
return options.index(prediction)
|
36 |
+
else:
|
37 |
+
return random.choice(range(len(choices)))
|
38 |
+
|
39 |
+
|
40 |
+
if __name__ == "__main__":
|
41 |
+
args = get_args()
|
42 |
+
|
43 |
+
base_dir = args.base_dir
|
44 |
+
split_indices = json.load(open(os.path.join(base_dir, "pid_splits.json")))[args.split]
|
45 |
+
problems = json.load(open(os.path.join(base_dir, "problems.json")))
|
46 |
+
our_predictions = [json.loads(line) for line in open(args.our_result)]
|
47 |
+
our_predictions = {pred['question_id']: pred for pred in our_predictions}
|
48 |
+
split_problems = {idx: problems[idx] for idx in split_indices}
|
49 |
+
|
50 |
+
requery_predictions = [json.loads(line) for line in open(args.requery_result)]
|
51 |
+
requery_predictions = {pred['question_id']: pred for pred in requery_predictions}
|
52 |
+
|
53 |
+
gpt4_predictions = json.load(open(args.gpt4_result))['outputs']
|
54 |
+
|
55 |
+
results = defaultdict(lambda: 0)
|
56 |
+
|
57 |
+
sqa_results = {}
|
58 |
+
sqa_results['acc'] = None
|
59 |
+
sqa_results['correct'] = None
|
60 |
+
sqa_results['count'] = None
|
61 |
+
sqa_results['results'] = {}
|
62 |
+
sqa_results['outputs'] = {}
|
63 |
+
|
64 |
+
for prob_id, prob in split_problems.items():
|
65 |
+
if prob_id not in our_predictions:
|
66 |
+
assert False
|
67 |
+
if prob_id not in gpt4_predictions:
|
68 |
+
assert False
|
69 |
+
our_pred = our_predictions[prob_id]['text']
|
70 |
+
gpt4_pred = gpt4_predictions[prob_id]
|
71 |
+
if prob_id not in requery_predictions:
|
72 |
+
results['missing_requery'] += 1
|
73 |
+
requery_pred = "MISSING"
|
74 |
+
else:
|
75 |
+
requery_pred = requery_predictions[prob_id]['text']
|
76 |
+
|
77 |
+
pattern = re.compile(r'The answer is ([A-Z]).')
|
78 |
+
our_res = pattern.findall(our_pred)
|
79 |
+
if len(our_res) == 1:
|
80 |
+
our_answer = our_res[0] # 'A', 'B', ...
|
81 |
+
else:
|
82 |
+
our_answer = "FAILED"
|
83 |
+
|
84 |
+
requery_res = pattern.findall(requery_pred)
|
85 |
+
if len(requery_res) == 1:
|
86 |
+
requery_answer = requery_res[0] # 'A', 'B', ...
|
87 |
+
else:
|
88 |
+
requery_answer = "FAILED"
|
89 |
+
|
90 |
+
gpt4_res = pattern.findall(gpt4_pred)
|
91 |
+
if len(gpt4_res) == 1:
|
92 |
+
gpt4_answer = gpt4_res[0] # 'A', 'B', ...
|
93 |
+
else:
|
94 |
+
gpt4_answer = "FAILED"
|
95 |
+
|
96 |
+
our_pred_idx = get_pred_idx(our_answer, prob['choices'], args.options)
|
97 |
+
gpt4_pred_idx = get_pred_idx(gpt4_answer, prob['choices'], args.options)
|
98 |
+
requery_pred_idx = get_pred_idx(requery_answer, prob['choices'], args.options)
|
99 |
+
|
100 |
+
results['total'] += 1
|
101 |
+
|
102 |
+
if gpt4_answer == 'FAILED':
|
103 |
+
results['gpt4_failed'] += 1
|
104 |
+
if gpt4_pred_idx == prob['answer']:
|
105 |
+
results['gpt4_correct'] += 1
|
106 |
+
if our_pred_idx == prob['answer']:
|
107 |
+
results['gpt4_ourvisual_correct'] += 1
|
108 |
+
elif gpt4_pred_idx == prob['answer']:
|
109 |
+
results['gpt4_correct'] += 1
|
110 |
+
results['gpt4_ourvisual_correct'] += 1
|
111 |
+
|
112 |
+
if our_pred_idx == prob['answer']:
|
113 |
+
results['our_correct'] += 1
|
114 |
+
|
115 |
+
if requery_answer == 'FAILED':
|
116 |
+
sqa_results['results'][prob_id] = our_pred_idx
|
117 |
+
if our_pred_idx == prob['answer']:
|
118 |
+
results['requery_correct'] += 1
|
119 |
+
else:
|
120 |
+
sqa_results['results'][prob_id] = requery_pred_idx
|
121 |
+
if requery_pred_idx == prob['answer']:
|
122 |
+
results['requery_correct'] += 1
|
123 |
+
else:
|
124 |
+
print(f"""
|
125 |
+
Question ({args.options[prob['answer']]}): {our_predictions[prob_id]['prompt']}
|
126 |
+
Our ({our_answer}): {our_pred}
|
127 |
+
GPT-4 ({gpt4_answer}): {gpt4_pred}
|
128 |
+
Requery ({requery_answer}): {requery_pred}
|
129 |
+
print("=====================================")
|
130 |
+
""")
|
131 |
+
|
132 |
+
if gpt4_pred_idx == prob['answer'] or our_pred_idx == prob['answer']:
|
133 |
+
results['correct_upperbound'] += 1
|
134 |
+
|
135 |
+
total = results['total']
|
136 |
+
print(f'Total: {total}, Our-Correct: {results["our_correct"]}, Accuracy: {results["our_correct"] / total * 100:.2f}%')
|
137 |
+
print(f'Total: {total}, GPT-4-Correct: {results["gpt4_correct"]}, Accuracy: {results["gpt4_correct"] / total * 100:.2f}%')
|
138 |
+
print(f'Total: {total}, GPT-4 NO-ANS (RANDOM): {results["gpt4_failed"]}, Percentage: {results["gpt4_failed"] / total * 100:.2f}%')
|
139 |
+
print(f'Total: {total}, GPT-4-OursVisual-Correct: {results["gpt4_ourvisual_correct"]}, Accuracy: {results["gpt4_ourvisual_correct"] / total * 100:.2f}%')
|
140 |
+
print(f'Total: {total}, Requery-Correct: {results["requery_correct"]}, Accuracy: {results["requery_correct"] / total * 100:.2f}%')
|
141 |
+
print(f'Total: {total}, Correct upper: {results["correct_upperbound"]}, Accuracy: {results["correct_upperbound"] / total * 100:.2f}%')
|
142 |
+
|
143 |
+
sqa_results['acc'] = results["requery_correct"] / total * 100
|
144 |
+
sqa_results['correct'] = results["requery_correct"]
|
145 |
+
sqa_results['count'] = total
|
146 |
+
|
147 |
+
with open(args.output_result, 'w') as f:
|
148 |
+
json.dump(sqa_results, f, indent=2)
|
149 |
+
|
llava/eval/generate_webpage_data_from_table.py
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Generate json file for webpage."""
|
2 |
+
import json
|
3 |
+
import os
|
4 |
+
import re
|
5 |
+
|
6 |
+
# models = ['llama', 'alpaca', 'gpt35', 'bard']
|
7 |
+
models = ['vicuna']
|
8 |
+
|
9 |
+
|
10 |
+
def read_jsonl(path: str, key: str=None):
|
11 |
+
data = []
|
12 |
+
with open(os.path.expanduser(path)) as f:
|
13 |
+
for line in f:
|
14 |
+
if not line:
|
15 |
+
continue
|
16 |
+
data.append(json.loads(line))
|
17 |
+
if key is not None:
|
18 |
+
data.sort(key=lambda x: x[key])
|
19 |
+
data = {item[key]: item for item in data}
|
20 |
+
return data
|
21 |
+
|
22 |
+
|
23 |
+
def trim_hanging_lines(s: str, n: int) -> str:
|
24 |
+
s = s.strip()
|
25 |
+
for _ in range(n):
|
26 |
+
s = s.split('\n', 1)[1].strip()
|
27 |
+
return s
|
28 |
+
|
29 |
+
|
30 |
+
if __name__ == '__main__':
|
31 |
+
questions = read_jsonl('table/question.jsonl', key='question_id')
|
32 |
+
|
33 |
+
# alpaca_answers = read_jsonl('table/answer/answer_alpaca-13b.jsonl', key='question_id')
|
34 |
+
# bard_answers = read_jsonl('table/answer/answer_bard.jsonl', key='question_id')
|
35 |
+
# gpt35_answers = read_jsonl('table/answer/answer_gpt35.jsonl', key='question_id')
|
36 |
+
# llama_answers = read_jsonl('table/answer/answer_llama-13b.jsonl', key='question_id')
|
37 |
+
vicuna_answers = read_jsonl('table/answer/answer_vicuna-13b.jsonl', key='question_id')
|
38 |
+
ours_answers = read_jsonl('table/results/llama-13b-hf-alpaca.jsonl', key='question_id')
|
39 |
+
|
40 |
+
review_vicuna = read_jsonl('table/review/review_vicuna-13b_llama-13b-hf-alpaca.jsonl', key='question_id')
|
41 |
+
# review_alpaca = read_jsonl('table/review/review_alpaca-13b_vicuna-13b.jsonl', key='question_id')
|
42 |
+
# review_bard = read_jsonl('table/review/review_bard_vicuna-13b.jsonl', key='question_id')
|
43 |
+
# review_gpt35 = read_jsonl('table/review/review_gpt35_vicuna-13b.jsonl', key='question_id')
|
44 |
+
# review_llama = read_jsonl('table/review/review_llama-13b_vicuna-13b.jsonl', key='question_id')
|
45 |
+
|
46 |
+
records = []
|
47 |
+
for qid in questions.keys():
|
48 |
+
r = {
|
49 |
+
'id': qid,
|
50 |
+
'category': questions[qid]['category'],
|
51 |
+
'question': questions[qid]['text'],
|
52 |
+
'answers': {
|
53 |
+
# 'alpaca': alpaca_answers[qid]['text'],
|
54 |
+
# 'llama': llama_answers[qid]['text'],
|
55 |
+
# 'bard': bard_answers[qid]['text'],
|
56 |
+
# 'gpt35': gpt35_answers[qid]['text'],
|
57 |
+
'vicuna': vicuna_answers[qid]['text'],
|
58 |
+
'ours': ours_answers[qid]['text'],
|
59 |
+
},
|
60 |
+
'evaluations': {
|
61 |
+
# 'alpaca': review_alpaca[qid]['text'],
|
62 |
+
# 'llama': review_llama[qid]['text'],
|
63 |
+
# 'bard': review_bard[qid]['text'],
|
64 |
+
'vicuna': review_vicuna[qid]['content'],
|
65 |
+
# 'gpt35': review_gpt35[qid]['text'],
|
66 |
+
},
|
67 |
+
'scores': {
|
68 |
+
'vicuna': review_vicuna[qid]['tuple'],
|
69 |
+
# 'alpaca': review_alpaca[qid]['score'],
|
70 |
+
# 'llama': review_llama[qid]['score'],
|
71 |
+
# 'bard': review_bard[qid]['score'],
|
72 |
+
# 'gpt35': review_gpt35[qid]['score'],
|
73 |
+
},
|
74 |
+
}
|
75 |
+
|
76 |
+
# cleanup data
|
77 |
+
cleaned_evals = {}
|
78 |
+
for k, v in r['evaluations'].items():
|
79 |
+
v = v.strip()
|
80 |
+
lines = v.split('\n')
|
81 |
+
# trim the first line if it's a pair of numbers
|
82 |
+
if re.match(r'\d+[, ]+\d+', lines[0]):
|
83 |
+
lines = lines[1:]
|
84 |
+
v = '\n'.join(lines)
|
85 |
+
cleaned_evals[k] = v.replace('Assistant 1', "**Assistant 1**").replace('Assistant 2', '**Assistant 2**')
|
86 |
+
|
87 |
+
r['evaluations'] = cleaned_evals
|
88 |
+
records.append(r)
|
89 |
+
|
90 |
+
# Reorder the records, this is optional
|
91 |
+
for r in records:
|
92 |
+
if r['id'] <= 20:
|
93 |
+
r['id'] += 60
|
94 |
+
else:
|
95 |
+
r['id'] -= 20
|
96 |
+
for r in records:
|
97 |
+
if r['id'] <= 50:
|
98 |
+
r['id'] += 10
|
99 |
+
elif 50 < r['id'] <= 60:
|
100 |
+
r['id'] -= 50
|
101 |
+
for r in records:
|
102 |
+
if r['id'] == 7:
|
103 |
+
r['id'] = 1
|
104 |
+
elif r['id'] < 7:
|
105 |
+
r['id'] += 1
|
106 |
+
|
107 |
+
records.sort(key=lambda x: x['id'])
|
108 |
+
|
109 |
+
# Write to file
|
110 |
+
with open('webpage/data.json', 'w') as f:
|
111 |
+
json.dump({'questions': records, 'models': models}, f, indent=2)
|
llava/eval/model_qa.py
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, StoppingCriteria
|
3 |
+
import torch
|
4 |
+
import os
|
5 |
+
import json
|
6 |
+
from tqdm import tqdm
|
7 |
+
import shortuuid
|
8 |
+
|
9 |
+
from llava.conversation import default_conversation
|
10 |
+
from llava.utils import disable_torch_init
|
11 |
+
|
12 |
+
|
13 |
+
# new stopping implementation
|
14 |
+
class KeywordsStoppingCriteria(StoppingCriteria):
|
15 |
+
def __init__(self, keywords, tokenizer, input_ids):
|
16 |
+
self.keywords = keywords
|
17 |
+
self.tokenizer = tokenizer
|
18 |
+
self.start_len = None
|
19 |
+
self.input_ids = input_ids
|
20 |
+
|
21 |
+
def __call__(self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
|
22 |
+
if self.start_len is None:
|
23 |
+
self.start_len = self.input_ids.shape[1]
|
24 |
+
else:
|
25 |
+
outputs = self.tokenizer.batch_decode(output_ids[:, self.start_len:], skip_special_tokens=True)[0]
|
26 |
+
for keyword in self.keywords:
|
27 |
+
if keyword in outputs:
|
28 |
+
return True
|
29 |
+
return False
|
30 |
+
|
31 |
+
|
32 |
+
@torch.inference_mode()
|
33 |
+
def eval_model(model_name, questions_file, answers_file):
|
34 |
+
# Model
|
35 |
+
disable_torch_init()
|
36 |
+
model_name = os.path.expanduser(model_name)
|
37 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False)
|
38 |
+
model = AutoModelForCausalLM.from_pretrained(model_name,
|
39 |
+
torch_dtype=torch.float16).cuda()
|
40 |
+
|
41 |
+
|
42 |
+
ques_file = open(os.path.expanduser(questions_file), "r")
|
43 |
+
ans_file = open(os.path.expanduser(answers_file), "w")
|
44 |
+
for i, line in enumerate(tqdm(ques_file)):
|
45 |
+
idx = json.loads(line)["question_id"]
|
46 |
+
qs = json.loads(line)["text"]
|
47 |
+
cat = json.loads(line)["category"]
|
48 |
+
conv = default_conversation.copy()
|
49 |
+
conv.append_message(conv.roles[0], qs)
|
50 |
+
prompt = conv.get_prompt()
|
51 |
+
inputs = tokenizer([prompt])
|
52 |
+
input_ids = torch.as_tensor(inputs.input_ids).cuda()
|
53 |
+
stopping_criteria = KeywordsStoppingCriteria([conv.sep], tokenizer, input_ids)
|
54 |
+
output_ids = model.generate(
|
55 |
+
input_ids,
|
56 |
+
do_sample=True,
|
57 |
+
use_cache=True,
|
58 |
+
temperature=0.7,
|
59 |
+
max_new_tokens=1024,
|
60 |
+
stopping_criteria=[stopping_criteria])
|
61 |
+
outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0]
|
62 |
+
try:
|
63 |
+
index = outputs.index(conv.sep, len(prompt))
|
64 |
+
except ValueError:
|
65 |
+
outputs += conv.sep
|
66 |
+
index = outputs.index(conv.sep, len(prompt))
|
67 |
+
|
68 |
+
outputs = outputs[len(prompt) + len(conv.roles[1]) + 2:index].strip()
|
69 |
+
ans_id = shortuuid.uuid()
|
70 |
+
ans_file.write(json.dumps({"question_id": idx,
|
71 |
+
"text": outputs,
|
72 |
+
"answer_id": ans_id,
|
73 |
+
"model_id": model_name,
|
74 |
+
"metadata": {}}) + "\n")
|
75 |
+
ans_file.flush()
|
76 |
+
ans_file.close()
|
77 |
+
|
78 |
+
if __name__ == "__main__":
|
79 |
+
parser = argparse.ArgumentParser()
|
80 |
+
parser.add_argument("--model-name", type=str, default="facebook/opt-350m")
|
81 |
+
parser.add_argument("--question-file", type=str, default="tables/question.jsonl")
|
82 |
+
parser.add_argument("--answers-file", type=str, default="answer.jsonl")
|
83 |
+
args = parser.parse_args()
|
84 |
+
|
85 |
+
eval_model(args.model_name, args.question_file, args.answers_file)
|
llava/eval/model_vqa.py
ADDED
@@ -0,0 +1,112 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import torch
|
3 |
+
import os
|
4 |
+
import json
|
5 |
+
from tqdm import tqdm
|
6 |
+
import shortuuid
|
7 |
+
|
8 |
+
from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
|
9 |
+
from llava.conversation import conv_templates, SeparatorStyle
|
10 |
+
from llava.model.builder import load_pretrained_model
|
11 |
+
from llava.utils import disable_torch_init
|
12 |
+
from llava.mm_utils import tokenizer_image_token, get_model_name_from_path, KeywordsStoppingCriteria
|
13 |
+
|
14 |
+
from PIL import Image
|
15 |
+
import math
|
16 |
+
|
17 |
+
|
18 |
+
def split_list(lst, n):
|
19 |
+
"""Split a list into n (roughly) equal-sized chunks"""
|
20 |
+
chunk_size = math.ceil(len(lst) / n) # integer division
|
21 |
+
return [lst[i:i+chunk_size] for i in range(0, len(lst), chunk_size)]
|
22 |
+
|
23 |
+
|
24 |
+
def get_chunk(lst, n, k):
|
25 |
+
chunks = split_list(lst, n)
|
26 |
+
return chunks[k]
|
27 |
+
|
28 |
+
|
29 |
+
def eval_model(args):
|
30 |
+
# Model
|
31 |
+
disable_torch_init()
|
32 |
+
model_path = os.path.expanduser(args.model_path)
|
33 |
+
model_name = get_model_name_from_path(model_path)
|
34 |
+
tokenizer, model, image_processor, context_len = load_pretrained_model(model_path, args.model_base, model_name)
|
35 |
+
|
36 |
+
questions = [json.loads(q) for q in open(os.path.expanduser(args.question_file), "r")]
|
37 |
+
questions = get_chunk(questions, args.num_chunks, args.chunk_idx)
|
38 |
+
answers_file = os.path.expanduser(args.answers_file)
|
39 |
+
os.makedirs(os.path.dirname(answers_file), exist_ok=True)
|
40 |
+
ans_file = open(answers_file, "w")
|
41 |
+
for line in tqdm(questions):
|
42 |
+
idx = line["question_id"]
|
43 |
+
image_file = line["image"]
|
44 |
+
qs = line["text"]
|
45 |
+
cur_prompt = qs
|
46 |
+
if model.config.mm_use_im_start_end:
|
47 |
+
qs = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + qs
|
48 |
+
else:
|
49 |
+
qs = DEFAULT_IMAGE_TOKEN + '\n' + qs
|
50 |
+
|
51 |
+
conv = conv_templates[args.conv_mode].copy()
|
52 |
+
conv.append_message(conv.roles[0], qs)
|
53 |
+
conv.append_message(conv.roles[1], None)
|
54 |
+
prompt = conv.get_prompt()
|
55 |
+
|
56 |
+
input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).cuda()
|
57 |
+
|
58 |
+
image = Image.open(os.path.join(args.image_folder, image_file))
|
59 |
+
image_tensor = image_processor.preprocess(image, return_tensors='pt')['pixel_values'][0]
|
60 |
+
|
61 |
+
stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
|
62 |
+
keywords = [stop_str]
|
63 |
+
stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)
|
64 |
+
|
65 |
+
with torch.inference_mode():
|
66 |
+
output_ids = model.generate(
|
67 |
+
input_ids,
|
68 |
+
images=image_tensor.unsqueeze(0).half().cuda(),
|
69 |
+
do_sample=True,
|
70 |
+
temperature=args.temperature,
|
71 |
+
top_p=args.top_p,
|
72 |
+
num_beams=args.num_beams,
|
73 |
+
# no_repeat_ngram_size=3,
|
74 |
+
max_new_tokens=1024,
|
75 |
+
use_cache=True)
|
76 |
+
|
77 |
+
input_token_len = input_ids.shape[1]
|
78 |
+
n_diff_input_output = (input_ids != output_ids[:, :input_token_len]).sum().item()
|
79 |
+
if n_diff_input_output > 0:
|
80 |
+
print(f'[Warning] {n_diff_input_output} output_ids are not the same as the input_ids')
|
81 |
+
outputs = tokenizer.batch_decode(output_ids[:, input_token_len:], skip_special_tokens=True)[0]
|
82 |
+
outputs = outputs.strip()
|
83 |
+
if outputs.endswith(stop_str):
|
84 |
+
outputs = outputs[:-len(stop_str)]
|
85 |
+
outputs = outputs.strip()
|
86 |
+
|
87 |
+
ans_id = shortuuid.uuid()
|
88 |
+
ans_file.write(json.dumps({"question_id": idx,
|
89 |
+
"prompt": cur_prompt,
|
90 |
+
"text": outputs,
|
91 |
+
"answer_id": ans_id,
|
92 |
+
"model_id": model_name,
|
93 |
+
"metadata": {}}) + "\n")
|
94 |
+
ans_file.flush()
|
95 |
+
ans_file.close()
|
96 |
+
|
97 |
+
if __name__ == "__main__":
|
98 |
+
parser = argparse.ArgumentParser()
|
99 |
+
parser.add_argument("--model-path", type=str, default="facebook/opt-350m")
|
100 |
+
parser.add_argument("--model-base", type=str, default=None)
|
101 |
+
parser.add_argument("--image-folder", type=str, default="")
|
102 |
+
parser.add_argument("--question-file", type=str, default="tables/question.jsonl")
|
103 |
+
parser.add_argument("--answers-file", type=str, default="answer.jsonl")
|
104 |
+
parser.add_argument("--conv-mode", type=str, default="llava_v1")
|
105 |
+
parser.add_argument("--num-chunks", type=int, default=1)
|
106 |
+
parser.add_argument("--chunk-idx", type=int, default=0)
|
107 |
+
parser.add_argument("--temperature", type=float, default=0.2)
|
108 |
+
parser.add_argument("--top_p", type=float, default=None)
|
109 |
+
parser.add_argument("--num_beams", type=int, default=1)
|
110 |
+
args = parser.parse_args()
|
111 |
+
|
112 |
+
eval_model(args)
|
llava/eval/model_vqa_science.py
ADDED
@@ -0,0 +1,141 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import torch
|
3 |
+
import os
|
4 |
+
import json
|
5 |
+
from tqdm import tqdm
|
6 |
+
import shortuuid
|
7 |
+
|
8 |
+
from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
|
9 |
+
from llava.conversation import conv_templates, SeparatorStyle
|
10 |
+
from llava.model.builder import load_pretrained_model
|
11 |
+
from llava.utils import disable_torch_init
|
12 |
+
from llava.mm_utils import tokenizer_image_token, get_model_name_from_path, KeywordsStoppingCriteria
|
13 |
+
|
14 |
+
from PIL import Image
|
15 |
+
import math
|
16 |
+
|
17 |
+
|
18 |
+
def split_list(lst, n):
|
19 |
+
"""Split a list into n (roughly) equal-sized chunks"""
|
20 |
+
chunk_size = math.ceil(len(lst) / n) # integer division
|
21 |
+
return [lst[i:i+chunk_size] for i in range(0, len(lst), chunk_size)]
|
22 |
+
|
23 |
+
|
24 |
+
def get_chunk(lst, n, k):
|
25 |
+
chunks = split_list(lst, n)
|
26 |
+
return chunks[k]
|
27 |
+
|
28 |
+
|
29 |
+
def eval_model(args):
|
30 |
+
# Model
|
31 |
+
disable_torch_init()
|
32 |
+
model_path = os.path.expanduser(args.model_path)
|
33 |
+
model_name = get_model_name_from_path(model_path)
|
34 |
+
tokenizer, model, image_processor, context_len = load_pretrained_model(model_path, args.model_base, model_name)
|
35 |
+
|
36 |
+
questions = json.load(open(os.path.expanduser(args.question_file), "r"))
|
37 |
+
questions = get_chunk(questions, args.num_chunks, args.chunk_idx)
|
38 |
+
answers_file = os.path.expanduser(args.answers_file)
|
39 |
+
os.makedirs(os.path.dirname(answers_file), exist_ok=True)
|
40 |
+
ans_file = open(answers_file, "w")
|
41 |
+
for i, line in enumerate(tqdm(questions)):
|
42 |
+
idx = line["id"]
|
43 |
+
question = line['conversations'][0]
|
44 |
+
qs = question['value'].replace('<image>', '').strip()
|
45 |
+
cur_prompt = qs
|
46 |
+
|
47 |
+
if 'image' in line:
|
48 |
+
image_file = line["image"]
|
49 |
+
image = Image.open(os.path.join(args.image_folder, image_file))
|
50 |
+
image_tensor = image_processor.preprocess(image, return_tensors='pt')['pixel_values'][0]
|
51 |
+
images = image_tensor.unsqueeze(0).half().cuda()
|
52 |
+
if getattr(model.config, 'mm_use_im_start_end', False):
|
53 |
+
qs = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + qs
|
54 |
+
else:
|
55 |
+
qs = DEFAULT_IMAGE_TOKEN + '\n' + qs
|
56 |
+
cur_prompt = '<image>' + '\n' + cur_prompt
|
57 |
+
else:
|
58 |
+
images = None
|
59 |
+
|
60 |
+
conv = conv_templates[args.conv_mode].copy()
|
61 |
+
conv.append_message(conv.roles[0], qs)
|
62 |
+
conv.append_message(conv.roles[1], None)
|
63 |
+
prompt = conv.get_prompt()
|
64 |
+
|
65 |
+
input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).cuda()
|
66 |
+
|
67 |
+
stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
|
68 |
+
keywords = [stop_str]
|
69 |
+
stopping_criteria = [KeywordsStoppingCriteria(keywords, tokenizer, input_ids)] if conv.version == "v0" else None
|
70 |
+
|
71 |
+
with torch.inference_mode():
|
72 |
+
output_ids = model.generate(
|
73 |
+
input_ids,
|
74 |
+
images=images,
|
75 |
+
do_sample=True,
|
76 |
+
temperature=0.2,
|
77 |
+
max_new_tokens=1024,
|
78 |
+
use_cache=True,
|
79 |
+
stopping_criteria=stopping_criteria,
|
80 |
+
)
|
81 |
+
|
82 |
+
input_token_len = input_ids.shape[1]
|
83 |
+
n_diff_input_output = (input_ids != output_ids[:, :input_token_len]).sum().item()
|
84 |
+
if n_diff_input_output > 0:
|
85 |
+
print(f'[Warning] {n_diff_input_output} output_ids are not the same as the input_ids')
|
86 |
+
outputs = tokenizer.batch_decode(output_ids[:, input_token_len:], skip_special_tokens=True)[0]
|
87 |
+
outputs = outputs.strip()
|
88 |
+
if outputs.endswith(stop_str):
|
89 |
+
outputs = outputs[:-len(stop_str)]
|
90 |
+
outputs = outputs.strip()
|
91 |
+
|
92 |
+
# prompt for answer
|
93 |
+
if args.answer_prompter:
|
94 |
+
outputs_reasoning = outputs
|
95 |
+
input_ids = tokenizer_image_token(prompt + outputs_reasoning + ' ###\nANSWER:', tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).cuda()
|
96 |
+
|
97 |
+
with torch.inference_mode():
|
98 |
+
output_ids = model.generate(
|
99 |
+
input_ids,
|
100 |
+
images=images,
|
101 |
+
do_sample=True,
|
102 |
+
temperature=0.2,
|
103 |
+
max_new_tokens=64,
|
104 |
+
use_cache=True,
|
105 |
+
stopping_criteria=[stopping_criteria])
|
106 |
+
|
107 |
+
input_token_len = input_ids.shape[1]
|
108 |
+
n_diff_input_output = (input_ids != output_ids[:, :input_token_len]).sum().item()
|
109 |
+
if n_diff_input_output > 0:
|
110 |
+
print(f'[Warning] {n_diff_input_output} output_ids are not the same as the input_ids')
|
111 |
+
outputs = tokenizer.batch_decode(output_ids[:, input_token_len:], skip_special_tokens=True)[0]
|
112 |
+
outputs = outputs.strip()
|
113 |
+
if outputs.endswith(stop_str):
|
114 |
+
outputs = outputs[:-len(stop_str)]
|
115 |
+
outputs = outputs.strip()
|
116 |
+
outputs = outputs_reasoning + '\n The answer is ' + outputs
|
117 |
+
|
118 |
+
ans_id = shortuuid.uuid()
|
119 |
+
ans_file.write(json.dumps({"question_id": idx,
|
120 |
+
"prompt": cur_prompt,
|
121 |
+
"text": outputs,
|
122 |
+
"answer_id": ans_id,
|
123 |
+
"model_id": model_name,
|
124 |
+
"metadata": {}}) + "\n")
|
125 |
+
ans_file.flush()
|
126 |
+
ans_file.close()
|
127 |
+
|
128 |
+
if __name__ == "__main__":
|
129 |
+
parser = argparse.ArgumentParser()
|
130 |
+
parser.add_argument("--model-path", type=str, default="facebook/opt-350m")
|
131 |
+
parser.add_argument("--model-base", type=str, default=None)
|
132 |
+
parser.add_argument("--image-folder", type=str, default="")
|
133 |
+
parser.add_argument("--question-file", type=str, default="tables/question.json")
|
134 |
+
parser.add_argument("--answers-file", type=str, default="answer.jsonl")
|
135 |
+
parser.add_argument("--conv-mode", type=str, default="llava_v0")
|
136 |
+
parser.add_argument("--num-chunks", type=int, default=1)
|
137 |
+
parser.add_argument("--chunk-idx", type=int, default=0)
|
138 |
+
parser.add_argument("--answer-prompter", action="store_true")
|
139 |
+
args = parser.parse_args()
|
140 |
+
|
141 |
+
eval_model(args)
|
llava/eval/qa_baseline_gpt35.py
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Generate answers with GPT-3.5"""
|
2 |
+
# Note: you need to be using OpenAI Python v0.27.0 for the code below to work
|
3 |
+
import argparse
|
4 |
+
import json
|
5 |
+
import os
|
6 |
+
import time
|
7 |
+
import concurrent.futures
|
8 |
+
|
9 |
+
import openai
|
10 |
+
import tqdm
|
11 |
+
import shortuuid
|
12 |
+
|
13 |
+
MODEL = 'gpt-3.5-turbo'
|
14 |
+
MODEL_ID = 'gpt-3.5-turbo:20230327'
|
15 |
+
|
16 |
+
def get_answer(question_id: int, question: str, max_tokens: int):
|
17 |
+
ans = {
|
18 |
+
'answer_id': shortuuid.uuid(),
|
19 |
+
'question_id': question_id,
|
20 |
+
'model_id': MODEL_ID,
|
21 |
+
}
|
22 |
+
for _ in range(3):
|
23 |
+
try:
|
24 |
+
response = openai.ChatCompletion.create(
|
25 |
+
model=MODEL,
|
26 |
+
messages=[{
|
27 |
+
'role': 'system',
|
28 |
+
'content': 'You are a helpful assistant.'
|
29 |
+
}, {
|
30 |
+
'role': 'user',
|
31 |
+
'content': question,
|
32 |
+
}],
|
33 |
+
max_tokens=max_tokens,
|
34 |
+
)
|
35 |
+
ans['text'] = response['choices'][0]['message']['content']
|
36 |
+
return ans
|
37 |
+
except Exception as e:
|
38 |
+
print('[ERROR]', e)
|
39 |
+
ans['text'] = '#ERROR#'
|
40 |
+
time.sleep(1)
|
41 |
+
return ans
|
42 |
+
|
43 |
+
|
44 |
+
if __name__ == '__main__':
|
45 |
+
parser = argparse.ArgumentParser(description='ChatGPT answer generation.')
|
46 |
+
parser.add_argument('-q', '--question')
|
47 |
+
parser.add_argument('-o', '--output')
|
48 |
+
parser.add_argument('--max-tokens', type=int, default=1024, help='maximum number of tokens produced in the output')
|
49 |
+
args = parser.parse_args()
|
50 |
+
|
51 |
+
questions_dict = {}
|
52 |
+
with open(os.path.expanduser(args.question)) as f:
|
53 |
+
for line in f:
|
54 |
+
if not line:
|
55 |
+
continue
|
56 |
+
q = json.loads(line)
|
57 |
+
questions_dict[q['question_id']] = q['text']
|
58 |
+
|
59 |
+
answers = []
|
60 |
+
|
61 |
+
with concurrent.futures.ThreadPoolExecutor(max_workers=32) as executor:
|
62 |
+
futures = []
|
63 |
+
for qid, question in questions_dict.items():
|
64 |
+
future = executor.submit(get_answer, qid, question, args.max_tokens)
|
65 |
+
futures.append(future)
|
66 |
+
|
67 |
+
for future in tqdm.tqdm(concurrent.futures.as_completed(futures), total=len(futures)):
|
68 |
+
answers.append(future.result())
|
69 |
+
|
70 |
+
answers.sort(key=lambda x: x['question_id'])
|
71 |
+
|
72 |
+
with open(os.path.expanduser(args.output), 'w') as f:
|
73 |
+
table = [json.dumps(ans) for ans in answers]
|
74 |
+
f.write('\n'.join(table))
|
llava/eval/run_llava.py
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import torch
|
3 |
+
|
4 |
+
from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
|
5 |
+
from llava.conversation import conv_templates, SeparatorStyle
|
6 |
+
from llava.model.builder import load_pretrained_model
|
7 |
+
from llava.utils import disable_torch_init
|
8 |
+
from llava.mm_utils import tokenizer_image_token, get_model_name_from_path, KeywordsStoppingCriteria
|
9 |
+
|
10 |
+
from PIL import Image
|
11 |
+
|
12 |
+
import requests
|
13 |
+
from PIL import Image
|
14 |
+
from io import BytesIO
|
15 |
+
|
16 |
+
|
17 |
+
def load_image(image_file):
|
18 |
+
if image_file.startswith('http') or image_file.startswith('https'):
|
19 |
+
response = requests.get(image_file)
|
20 |
+
image = Image.open(BytesIO(response.content)).convert('RGB')
|
21 |
+
else:
|
22 |
+
image = Image.open(image_file).convert('RGB')
|
23 |
+
return image
|
24 |
+
|
25 |
+
|
26 |
+
def eval_model(args):
|
27 |
+
# Model
|
28 |
+
disable_torch_init()
|
29 |
+
|
30 |
+
model_name = get_model_name_from_path(args.model_path)
|
31 |
+
tokenizer, model, image_processor, context_len = load_pretrained_model(args.model_path, args.model_base, model_name)
|
32 |
+
|
33 |
+
qs = args.query
|
34 |
+
if model.config.mm_use_im_start_end:
|
35 |
+
qs = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + qs
|
36 |
+
else:
|
37 |
+
qs = DEFAULT_IMAGE_TOKEN + '\n' + qs
|
38 |
+
|
39 |
+
if 'llama-2' in model_name.lower():
|
40 |
+
conv_mode = "llava_llama_2"
|
41 |
+
elif "v1" in model_name.lower():
|
42 |
+
conv_mode = "llava_v1"
|
43 |
+
elif "mpt" in model_name.lower():
|
44 |
+
conv_mode = "mpt"
|
45 |
+
else:
|
46 |
+
conv_mode = "llava_v0"
|
47 |
+
|
48 |
+
if args.conv_mode is not None and conv_mode != args.conv_mode:
|
49 |
+
print('[WARNING] the auto inferred conversation mode is {}, while `--conv-mode` is {}, using {}'.format(conv_mode, args.conv_mode, args.conv_mode))
|
50 |
+
else:
|
51 |
+
args.conv_mode = conv_mode
|
52 |
+
|
53 |
+
conv = conv_templates[args.conv_mode].copy()
|
54 |
+
conv.append_message(conv.roles[0], qs)
|
55 |
+
conv.append_message(conv.roles[1], None)
|
56 |
+
prompt = conv.get_prompt()
|
57 |
+
|
58 |
+
image = load_image(args.image_file)
|
59 |
+
image_tensor = image_processor.preprocess(image, return_tensors='pt')['pixel_values'].half().cuda()
|
60 |
+
|
61 |
+
input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).cuda()
|
62 |
+
|
63 |
+
stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
|
64 |
+
keywords = [stop_str]
|
65 |
+
stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)
|
66 |
+
|
67 |
+
with torch.inference_mode():
|
68 |
+
output_ids = model.generate(
|
69 |
+
input_ids,
|
70 |
+
images=image_tensor,
|
71 |
+
do_sample=True,
|
72 |
+
temperature=0.2,
|
73 |
+
max_new_tokens=1024,
|
74 |
+
use_cache=True,
|
75 |
+
stopping_criteria=[stopping_criteria])
|
76 |
+
|
77 |
+
input_token_len = input_ids.shape[1]
|
78 |
+
n_diff_input_output = (input_ids != output_ids[:, :input_token_len]).sum().item()
|
79 |
+
if n_diff_input_output > 0:
|
80 |
+
print(f'[Warning] {n_diff_input_output} output_ids are not the same as the input_ids')
|
81 |
+
outputs = tokenizer.batch_decode(output_ids[:, input_token_len:], skip_special_tokens=True)[0]
|
82 |
+
outputs = outputs.strip()
|
83 |
+
if outputs.endswith(stop_str):
|
84 |
+
outputs = outputs[:-len(stop_str)]
|
85 |
+
outputs = outputs.strip()
|
86 |
+
print(outputs)
|
87 |
+
|
88 |
+
if __name__ == "__main__":
|
89 |
+
parser = argparse.ArgumentParser()
|
90 |
+
parser.add_argument("--model-path", type=str, default="facebook/opt-350m")
|
91 |
+
parser.add_argument("--model-base", type=str, default=None)
|
92 |
+
parser.add_argument("--image-file", type=str, required=True)
|
93 |
+
parser.add_argument("--query", type=str, required=True)
|
94 |
+
parser.add_argument("--conv-mode", type=str, default=None)
|
95 |
+
args = parser.parse_args()
|
96 |
+
|
97 |
+
eval_model(args)
|
llava/eval/summarize_gpt_review.py
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import os
|
3 |
+
from collections import defaultdict
|
4 |
+
|
5 |
+
import numpy as np
|
6 |
+
|
7 |
+
import argparse
|
8 |
+
|
9 |
+
def parse_args():
|
10 |
+
parser = argparse.ArgumentParser(description='ChatGPT-based QA evaluation.')
|
11 |
+
parser.add_argument('-d', '--dir', default=None)
|
12 |
+
parser.add_argument('-f', '--files', nargs='*', default=None)
|
13 |
+
parser.add_argument('-i', '--ignore', nargs='*', default=None)
|
14 |
+
return parser.parse_args()
|
15 |
+
|
16 |
+
|
17 |
+
if __name__ == '__main__':
|
18 |
+
args = parse_args()
|
19 |
+
|
20 |
+
if args.ignore is not None:
|
21 |
+
args.ignore = [int(x) for x in args.ignore]
|
22 |
+
|
23 |
+
if args.files is not None and len(args.files) > 0:
|
24 |
+
review_files = args.files
|
25 |
+
else:
|
26 |
+
review_files = [x for x in os.listdir(args.dir) if x.endswith('.jsonl') and (x.startswith('gpt4_text') or x.startswith('reviews_') or x.startswith('review_'))]
|
27 |
+
|
28 |
+
for review_file in sorted(review_files):
|
29 |
+
config = os.path.basename(review_file).replace('gpt4_text_', '').replace('.jsonl', '')
|
30 |
+
scores = defaultdict(list)
|
31 |
+
print(config)
|
32 |
+
with open(os.path.join(args.dir, review_file) if args.dir is not None else review_file) as f:
|
33 |
+
for review_str in f:
|
34 |
+
review = json.loads(review_str)
|
35 |
+
if args.ignore is not None and review['question_id'] in args.ignore:
|
36 |
+
continue
|
37 |
+
if 'category' in review:
|
38 |
+
scores[review['category']].append(review['tuple'])
|
39 |
+
scores['all'].append(review['tuple'])
|
40 |
+
else:
|
41 |
+
if 'tuple' in review:
|
42 |
+
scores['all'].append(review['tuple'])
|
43 |
+
else:
|
44 |
+
scores['all'].append(review['score'])
|
45 |
+
for k, v in sorted(scores.items()):
|
46 |
+
stats = np.asarray(v).mean(0).tolist()
|
47 |
+
stats = [round(x, 3) for x in stats]
|
48 |
+
# print(k, stats, round(stats[1]/stats[0]*100, 1))
|
49 |
+
print(k, round(stats[1]/stats[0]*100, 1))
|
50 |
+
print('=================================')
|
llava/eval/webpage/figures/alpaca.png
ADDED
llava/eval/webpage/figures/bard.jpg
ADDED
llava/eval/webpage/figures/chatgpt.svg
ADDED
llava/eval/webpage/figures/llama.jpg
ADDED
llava/eval/webpage/figures/swords_FILL0_wght300_GRAD0_opsz48.svg
ADDED
llava/eval/webpage/figures/vicuna.jpeg
ADDED
llava/eval/webpage/index.html
ADDED
@@ -0,0 +1,162 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<!DOCTYPE html>
|
2 |
+
<html lang="en">
|
3 |
+
<head>
|
4 |
+
<meta charset="UTF-8">
|
5 |
+
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
6 |
+
<title>Who's GPT-4's favorite? Battles between State-of-the-Art Chatbots</title>
|
7 |
+
<link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/bootstrap/4.5.2/css/bootstrap.min.css">
|
8 |
+
<link rel="stylesheet" href="https://fonts.googleapis.com/icon?family=Material+Icons">
|
9 |
+
<link rel="stylesheet" href="styles.css">
|
10 |
+
</head>
|
11 |
+
|
12 |
+
<body>
|
13 |
+
<nav class="navbar navbar-expand-lg navbar-dark bg-dark">
|
14 |
+
<a class="navbar-brand" href="#">🏔️ Vicuna Evaluation Examples</a>
|
15 |
+
<button class="navbar-toggler" type="button" data-toggle="collapse" data-target="#navbarNav" aria-controls="navbarNav" aria-expanded="false" aria-label="Toggle navigation">
|
16 |
+
<span class="navbar-toggler-icon"></span>
|
17 |
+
</button>
|
18 |
+
<div class="collapse navbar-collapse" id="navbarNav">
|
19 |
+
<ul class="navbar-nav mr-auto">
|
20 |
+
<li class="nav-item">
|
21 |
+
<a class="nav-link" href="https://chat.lmsys.org/">Demo</a>
|
22 |
+
</li>
|
23 |
+
<li class="nav-item">
|
24 |
+
<a class="nav-link" href="https://vicuna.lmsys.org">Blog</a>
|
25 |
+
</li>
|
26 |
+
<li class="nav-item">
|
27 |
+
<a class="nav-link" href="https://github.com/lm-sys/FastChat">Github</a>
|
28 |
+
</li>
|
29 |
+
</ul>
|
30 |
+
</div>
|
31 |
+
</nav>
|
32 |
+
|
33 |
+
<div class="container mt-5">
|
34 |
+
<h2 class="text-center mb-5">Who's GPT-4's favorite? Battles between State-of-the-Art Chatbots</h2>
|
35 |
+
|
36 |
+
<!-- Selection -->
|
37 |
+
<div class="form-row">
|
38 |
+
<div class="form-group col-md-2">
|
39 |
+
<label for="category-select">Category</label>
|
40 |
+
<select class="form-control" id="category-select"></select>
|
41 |
+
</div>
|
42 |
+
<div class="form-group col-md-8">
|
43 |
+
<label for="question-select">Question</label>
|
44 |
+
<select class="form-control" id="question-select"></select>
|
45 |
+
</div>
|
46 |
+
<div class="form-group col-md-2">
|
47 |
+
<div class="col-md-2"><label> </label></div>
|
48 |
+
<div class="btn-group" role="group" aria-label="Left and Right Controller">
|
49 |
+
<button type="button" class="form-control btn btn-primary" id="prev-question"><i class="material-icons">keyboard_arrow_left</i></button>
|
50 |
+
<button type="button" class="form-control btn btn-primary" id="next-question"><i class="material-icons">keyboard_arrow_right</i></button>
|
51 |
+
</div>
|
52 |
+
</div>
|
53 |
+
</div>
|
54 |
+
|
55 |
+
<!-- "Battle" -->
|
56 |
+
<div class="row mb-4" style="justify-content: center;">
|
57 |
+
<div class="col" style="display: flex; justify-content: center; align-items: center;">
|
58 |
+
<label class="adjustable-font-size" id="other-score-label">*/10</label>
|
59 |
+
</div>
|
60 |
+
<div class="col">
|
61 |
+
<div class="vertical-flex-layout">
|
62 |
+
<img class="shadow figure-img img-fluid" src="" alt="other logo" width="150" id="other-model-figure">
|
63 |
+
</div>
|
64 |
+
</div>
|
65 |
+
<div class="col">
|
66 |
+
<div class="vertical-flex-layout">
|
67 |
+
<!-- from: https://fonts.google.com/icons?icon.query=battle&selected=Material+Symbols+Outlined:swords:FILL@0;wght@300;GRAD@0;opsz@48&icon.style=Outlined -->
|
68 |
+
<img class="figure-img img-fluid" src="figures/swords_FILL0_wght300_GRAD0_opsz48.svg" width="60" height="60">
|
69 |
+
</div>
|
70 |
+
</div>
|
71 |
+
<div class="col">
|
72 |
+
<div class="vertical-flex-layout">
|
73 |
+
<img class="shadow figure-img img-fluid" src="figures/vicuna.jpeg" alt="vicuna logo" width="150" id="our-model-figure">
|
74 |
+
</div>
|
75 |
+
</div>
|
76 |
+
<div class="col" style="display: flex; justify-content: center; align-items: center;">
|
77 |
+
<label class="adjustable-font-size" id="our-score-label">*/10</label>
|
78 |
+
</div>
|
79 |
+
</div>
|
80 |
+
|
81 |
+
<!-- Question Card -->
|
82 |
+
<div class="card mb-4">
|
83 |
+
<div class="card-body" id="selected-question"></div>
|
84 |
+
</div>
|
85 |
+
|
86 |
+
<!-- Answer Cards -->
|
87 |
+
<div class="row">
|
88 |
+
<div class="col-md-6">
|
89 |
+
<div class="card mb-4 expandable-card">
|
90 |
+
<div class="card-header" style="padding-bottom: 0.2rem" id="other-model-header-bg">
|
91 |
+
<div class="row">
|
92 |
+
<div class="col-md-5" style="align-items: center; display: flex;">
|
93 |
+
<label id="other-model-header">Assistant #1</label>
|
94 |
+
</div>
|
95 |
+
<div class="col-md-7">
|
96 |
+
<select class="form-control" id="model-select" style="height: fit-content; margin-top: -0.3rem;"></select>
|
97 |
+
</div>
|
98 |
+
</div>
|
99 |
+
</div>
|
100 |
+
<div class="card-body">
|
101 |
+
<div class="card-text-container">
|
102 |
+
<div class="card-text" id="other-model-answer"></div>
|
103 |
+
</div>
|
104 |
+
<div class="btn btn-primary expand-btn" style="display:flex;"></div>
|
105 |
+
</div>
|
106 |
+
</div>
|
107 |
+
</div>
|
108 |
+
<div class="col-md-6">
|
109 |
+
<div class="card mb-4 expandable-card">
|
110 |
+
<div class="card-header" id="our-model-header">
|
111 |
+
Assistant #2 (Vicuna, our model)
|
112 |
+
</div>
|
113 |
+
<div class="card-body">
|
114 |
+
<div class="card-text-container">
|
115 |
+
<div class="card-text" id="our-model-answer"></div>
|
116 |
+
</div>
|
117 |
+
<div class="btn btn-primary expand-btn" style="display:flex;"></div>
|
118 |
+
</div>
|
119 |
+
</div>
|
120 |
+
</div>
|
121 |
+
</div>
|
122 |
+
|
123 |
+
<!-- Evaluation -->
|
124 |
+
<div class="card expandable-card">
|
125 |
+
<div class="card-header" style="background-color: #c9c9f2;" id="evaluation-header">GPT-4 Evaluation</div>
|
126 |
+
<div class="card-body">
|
127 |
+
<div class="card-text-container">
|
128 |
+
<div class="card-text" id="evaluation-result"></div>
|
129 |
+
</div>
|
130 |
+
<div class="btn btn-primary expand-btn" style="display:flex;"></div>
|
131 |
+
</div>
|
132 |
+
</div>
|
133 |
+
</div>
|
134 |
+
|
135 |
+
<div class="container-fluid bg-light py-2">
|
136 |
+
<div class="text-center">
|
137 |
+
<small class="text-muted">This website is co-authored with <a href="https://openai.com" target="_blank">GPT-4</a>.</small>
|
138 |
+
</div>
|
139 |
+
</div>
|
140 |
+
|
141 |
+
<!-- Marked.js -->
|
142 |
+
<script src="https://cdn.jsdelivr.net/npm/marked@4.3.0/lib/marked.umd.min.js"></script>
|
143 |
+
<!-- Bootstrap and Popper.js JavaScript dependencies -->
|
144 |
+
<script src="https://code.jquery.com/jquery-3.5.1.slim.min.js"></script>
|
145 |
+
<script src="https://cdn.jsdelivr.net/npm/@popperjs/core@2.11.6/dist/umd/popper.min.js"></script>
|
146 |
+
<script src="https://maxcdn.bootstrapcdn.com/bootstrap/4.5.2/js/bootstrap.min.js"></script>
|
147 |
+
|
148 |
+
<script src="script.js"></script>
|
149 |
+
<script>
|
150 |
+
// Fetch the JSON file
|
151 |
+
fetch('data.json')
|
152 |
+
.then(response => response.json())
|
153 |
+
.then(json_data => {
|
154 |
+
// Populate the models and questions.
|
155 |
+
populateModels(json_data.models);
|
156 |
+
populateQuestions(json_data.questions);
|
157 |
+
displayQuestion(currentQuestionIndex);
|
158 |
+
}).catch(error => console.error(error));
|
159 |
+
</script>
|
160 |
+
</body>
|
161 |
+
|
162 |
+
</html>
|
llava/eval/webpage/script.js
ADDED
@@ -0,0 +1,245 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Description: Script for the evaluation webpage.
|
2 |
+
|
3 |
+
let currentQuestionIndex = 1;
|
4 |
+
|
5 |
+
// Store the model name mapping for later use.
|
6 |
+
modelNameMapping = {
|
7 |
+
"gpt35": "ChatGPT-3.5",
|
8 |
+
"gpt4": "GPT-4",
|
9 |
+
"alpaca": "Alpaca-13b",
|
10 |
+
"vicuna": "Vicuna-13b",
|
11 |
+
"llama": "LLaMA-13b",
|
12 |
+
"bard": "Bard",
|
13 |
+
};
|
14 |
+
|
15 |
+
modelFigureMapping = {
|
16 |
+
"vicuna": "figures/vicuna.jpeg",
|
17 |
+
// Image from: https://commons.wikimedia.org/wiki/File:ChatGPT_logo.svg
|
18 |
+
"gpt35": "figures/chatgpt.svg",
|
19 |
+
// Image from: https://www.reddit.com/r/logodesign/comments/1128aat/google_ai_bard_logo_design/
|
20 |
+
"bard": "figures/bard.jpg",
|
21 |
+
// Image from: https://crfm.stanford.edu/2023/03/13/alpaca.html
|
22 |
+
"alpaca": "figures/alpaca.png",
|
23 |
+
// Image adapted from https://commons.wikimedia.org/wiki/File:Llama_on_Machu_Picchu.jpg
|
24 |
+
"llama": "figures/llama.jpg",
|
25 |
+
}
|
26 |
+
|
27 |
+
// Store the question data in a mapping for later use.
|
28 |
+
questionMapping = {};
|
29 |
+
// Store the question ids in a mapping for later use.
|
30 |
+
categoryMapping = {};
|
31 |
+
// Store the number of questions for later use.
|
32 |
+
questionsCount = 0;
|
33 |
+
|
34 |
+
|
35 |
+
function text2Markdown(text) {
|
36 |
+
// Normalize the text for markdown rendering.
|
37 |
+
text = text.trim().replaceAll('\n\n', '\n').replaceAll('\n', '\n\n');
|
38 |
+
return marked.parse(text);
|
39 |
+
}
|
40 |
+
|
41 |
+
function capitalizeFirstChar(str) {
|
42 |
+
if (!str || str.length === 0) {
|
43 |
+
return str;
|
44 |
+
}
|
45 |
+
return str.charAt(0).toUpperCase() + str.slice(1);
|
46 |
+
}
|
47 |
+
|
48 |
+
function updateQuestionSelect(question_id) {
|
49 |
+
const select = document.getElementById('question-select');
|
50 |
+
// Clear the question select.
|
51 |
+
select.innerHTML = '';
|
52 |
+
// Populate the question select.
|
53 |
+
category = questionMapping[question_id].category;
|
54 |
+
categoryMapping[category].forEach(question_id => {
|
55 |
+
const question = questionMapping[question_id];
|
56 |
+
const option = document.createElement('option');
|
57 |
+
option.value = question_id;
|
58 |
+
option.textContent = 'Q' + question_id.toString() + ': ' + question.question;
|
59 |
+
select.appendChild(option);
|
60 |
+
});
|
61 |
+
select.value = question_id;
|
62 |
+
}
|
63 |
+
|
64 |
+
function updateModelSelect() {
|
65 |
+
const select = document.getElementById('model-select');
|
66 |
+
img_path = modelFigureMapping[select.value];
|
67 |
+
document.getElementById('other-model-figure').src = img_path;
|
68 |
+
}
|
69 |
+
|
70 |
+
function populateModels(models) {
|
71 |
+
const select = document.getElementById('model-select');
|
72 |
+
models.forEach(model => {
|
73 |
+
const option = document.createElement('option');
|
74 |
+
option.value = model;
|
75 |
+
option.textContent = modelNameMapping[model];
|
76 |
+
select.appendChild(option);
|
77 |
+
});
|
78 |
+
updateModelSelect();
|
79 |
+
}
|
80 |
+
|
81 |
+
function populateQuestions(questions) {
|
82 |
+
const category_select = document.getElementById('category-select');
|
83 |
+
|
84 |
+
questionsCount = questions.length;
|
85 |
+
questions.forEach(question => {
|
86 |
+
const option = document.createElement('option');
|
87 |
+
// Store the question data in a mapping for later use.
|
88 |
+
questionMapping[question.id] = {
|
89 |
+
category: question.category,
|
90 |
+
question: question.question,
|
91 |
+
answers: question.answers,
|
92 |
+
evaluations: question.evaluations,
|
93 |
+
scores: question.scores,
|
94 |
+
};
|
95 |
+
// Store the question id in the category mapping.
|
96 |
+
if (question.category in categoryMapping) {
|
97 |
+
categoryMapping[question.category].push(question.id);
|
98 |
+
} else {
|
99 |
+
categoryMapping[question.category] = [question.id];
|
100 |
+
const category_option = document.createElement('option');
|
101 |
+
category_option.value = question.category;
|
102 |
+
category_option.textContent = capitalizeFirstChar(question.category);
|
103 |
+
category_select.appendChild(category_option);
|
104 |
+
}
|
105 |
+
});
|
106 |
+
// Set the default category.
|
107 |
+
updateQuestionSelect(currentQuestionIndex);
|
108 |
+
}
|
109 |
+
|
110 |
+
function displayQuestion(index) {
|
111 |
+
const question = questionMapping[index].question;
|
112 |
+
document.getElementById('selected-question').innerHTML = text2Markdown('**Question:** ' + question);
|
113 |
+
displayAnswers(index);
|
114 |
+
}
|
115 |
+
|
116 |
+
function displayAnswers(index) {
|
117 |
+
const question = questionMapping[index];
|
118 |
+
const otherModel = document.getElementById('model-select').value;
|
119 |
+
// render the answers with markdown
|
120 |
+
document.getElementById('other-model-answer').innerHTML = text2Markdown(question.answers[otherModel]);
|
121 |
+
document.getElementById('our-model-answer').innerHTML = text2Markdown(question.answers.vicuna);
|
122 |
+
|
123 |
+
// Display evaluation
|
124 |
+
score = question.scores[otherModel];
|
125 |
+
score_text = modelNameMapping[otherModel] + " " + score[0] + "/10, Vicuna-13b " + score[1] + "/10";
|
126 |
+
document.getElementById('evaluation-header').textContent = "GPT-4 Evaluation" + " (Score: " + score_text + ")";
|
127 |
+
document.getElementById('evaluation-result').innerHTML = text2Markdown(question.evaluations[otherModel]);
|
128 |
+
|
129 |
+
// Update model names
|
130 |
+
let assistant1_title = "Assistant #1"; // (" + modelNameMapping[otherModel] + ")";
|
131 |
+
let assistant2_title = "Assistant #2 (Vicuna-13b, our model)";
|
132 |
+
// Update scores/labels.
|
133 |
+
let assistant1_score_label = score[0].toString() + '/10';
|
134 |
+
let assistant2_score_label = score[1].toString() + '/10';
|
135 |
+
|
136 |
+
const colorRed ='#fa9'; // '#eb978d';
|
137 |
+
// const colorGreen = '#c9f2c9';
|
138 |
+
const colorBlue = '#8ef'; // '#71dbf9';
|
139 |
+
const colorYellow = '#fe7'; // '#fada57';
|
140 |
+
let otherModelHeaderColor = '';
|
141 |
+
let ourModelHeaderColor = '';
|
142 |
+
// Update the winner.
|
143 |
+
if (score[0] == score[1]) {
|
144 |
+
assistant1_title = '🏆 ' + assistant1_title;
|
145 |
+
assistant1_score_label = '🏆 ' + assistant1_score_label;
|
146 |
+
assistant2_title = '🏆 ' + assistant2_title;
|
147 |
+
assistant2_score_label = '🏆 ' + assistant2_score_label;
|
148 |
+
otherModelHeaderColor = colorYellow;
|
149 |
+
ourModelHeaderColor = colorYellow;
|
150 |
+
} else if (score[0] > score[1]) {
|
151 |
+
assistant1_title = '🏆 ' + assistant1_title;
|
152 |
+
assistant1_score_label = '🏆 ' + assistant1_score_label;
|
153 |
+
otherModelHeaderColor = colorBlue;
|
154 |
+
ourModelHeaderColor = colorRed;
|
155 |
+
} else if (score[0] < score[1]) {
|
156 |
+
assistant2_title = '🏆 ' + assistant2_title;
|
157 |
+
assistant2_score_label = '🏆 ' + assistant2_score_label;
|
158 |
+
otherModelHeaderColor = colorRed;
|
159 |
+
ourModelHeaderColor = colorBlue;
|
160 |
+
}
|
161 |
+
|
162 |
+
document.getElementById('other-model-header-bg').style.backgroundColor = otherModelHeaderColor;
|
163 |
+
document.getElementById('our-model-header').style.backgroundColor = ourModelHeaderColor;
|
164 |
+
|
165 |
+
document.getElementById('other-model-header').textContent = assistant1_title;
|
166 |
+
document.getElementById('our-model-header').textContent = assistant2_title;
|
167 |
+
|
168 |
+
document.getElementById('other-score-label').textContent = assistant1_score_label;
|
169 |
+
document.getElementById('our-score-label').textContent = assistant2_score_label;
|
170 |
+
|
171 |
+
// Update expand buttons visibility for both cards after displaying answers
|
172 |
+
// Reset the expanded state and update expand buttons visibility for both cards after displaying answers
|
173 |
+
document.querySelectorAll('.expandable-card').forEach(card => {
|
174 |
+
card.classList.remove('expanded');
|
175 |
+
updateExpandButtonVisibility(card);
|
176 |
+
const expandBtn = card.querySelector('.expand-btn');
|
177 |
+
expandBtn.innerHTML = '<i class="material-icons" style="pointer-events: none">keyboard_arrow_down</i> Show more'; // .textContent = 'Show more';
|
178 |
+
});
|
179 |
+
}
|
180 |
+
|
181 |
+
document.getElementById('question-select').addEventListener('change', e => {
|
182 |
+
currentQuestionIndex = parseInt(e.target.value);
|
183 |
+
displayQuestion(currentQuestionIndex);
|
184 |
+
});
|
185 |
+
|
186 |
+
document.getElementById('category-select').addEventListener('change', e => {
|
187 |
+
let currentCategory = e.target.value;
|
188 |
+
const questionIds = categoryMapping[currentCategory];
|
189 |
+
currentQuestionIndex = questionIds[0];
|
190 |
+
updateQuestionSelect(currentQuestionIndex);
|
191 |
+
displayQuestion(currentQuestionIndex);
|
192 |
+
});
|
193 |
+
|
194 |
+
// Update expand buttons whenever the model is changed
|
195 |
+
document.getElementById('model-select').addEventListener('change', () => {
|
196 |
+
displayAnswers(currentQuestionIndex);
|
197 |
+
document.querySelectorAll('.expandable-card').forEach(card => {
|
198 |
+
updateExpandButtonVisibility(card);
|
199 |
+
});
|
200 |
+
updateModelSelect();
|
201 |
+
});
|
202 |
+
|
203 |
+
function switchQuestionAndCategory() {
|
204 |
+
document.getElementById('question-select').value = currentQuestionIndex;
|
205 |
+
old_category = document.getElementById('category-select').value;
|
206 |
+
new_category = questionMapping[currentQuestionIndex].category;
|
207 |
+
if (old_category != new_category) {
|
208 |
+
document.getElementById('category-select').value = new_category;
|
209 |
+
updateQuestionSelect(currentQuestionIndex);
|
210 |
+
}
|
211 |
+
displayQuestion(currentQuestionIndex);
|
212 |
+
}
|
213 |
+
|
214 |
+
document.getElementById('prev-question').addEventListener('click', () => {
|
215 |
+
// Question index starts from 1.
|
216 |
+
currentQuestionIndex = Math.max(1, currentQuestionIndex - 1);
|
217 |
+
switchQuestionAndCategory();
|
218 |
+
});
|
219 |
+
|
220 |
+
document.getElementById('next-question').addEventListener('click', () => {
|
221 |
+
// Question index starts from 1.
|
222 |
+
currentQuestionIndex = Math.min(questionsCount, currentQuestionIndex + 1);
|
223 |
+
switchQuestionAndCategory();
|
224 |
+
});
|
225 |
+
|
226 |
+
function updateExpandButtonVisibility(card) {
|
227 |
+
const cardTextContainer = card.querySelector('.card-text-container');
|
228 |
+
const expandBtn = card.querySelector('.expand-btn');
|
229 |
+
if (cardTextContainer.scrollHeight > cardTextContainer.offsetHeight) {
|
230 |
+
expandBtn.style.display = 'flex';
|
231 |
+
} else {
|
232 |
+
expandBtn.style.display = 'none';
|
233 |
+
card.classList.add('expanded');
|
234 |
+
}
|
235 |
+
}
|
236 |
+
|
237 |
+
document.querySelectorAll('.expand-btn').forEach(btn => {
|
238 |
+
btn.addEventListener('click', e => {
|
239 |
+
const card = e.target.closest('.expandable-card');
|
240 |
+
card.classList.toggle('expanded');
|
241 |
+
const more = '<i class="material-icons" style="pointer-events: none">keyboard_arrow_down</i> Show more';
|
242 |
+
const less = '<i class="material-icons" style="pointer-events: none">keyboard_arrow_up</i> Show less';
|
243 |
+
e.target.innerHTML = card.classList.contains('expanded') ? less : more;
|
244 |
+
});
|
245 |
+
});
|
llava/eval/webpage/styles.css
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
body {
|
2 |
+
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
|
3 |
+
background-color: #f8f9fa;
|
4 |
+
}
|
5 |
+
|
6 |
+
.navbar-dark .navbar-nav .nav-link {
|
7 |
+
color: #f1cf68;
|
8 |
+
font-size: 1.1rem;
|
9 |
+
padding: 0.5rem 0.6rem;
|
10 |
+
}
|
11 |
+
|
12 |
+
.card-header {
|
13 |
+
font-weight: bold;
|
14 |
+
}
|
15 |
+
|
16 |
+
.card {
|
17 |
+
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
|
18 |
+
transition: 0.3s;
|
19 |
+
}
|
20 |
+
|
21 |
+
.card:hover {
|
22 |
+
box-shadow: 0 8px 16px rgba(0, 0, 0, 0.2);
|
23 |
+
}
|
24 |
+
|
25 |
+
button {
|
26 |
+
transition: background-color 0.3s;
|
27 |
+
}
|
28 |
+
|
29 |
+
button:hover {
|
30 |
+
background-color: #007bff;
|
31 |
+
}
|
32 |
+
|
33 |
+
@media (max-width: 767px) {
|
34 |
+
.form-row .form-group {
|
35 |
+
margin-bottom: 10px;
|
36 |
+
}
|
37 |
+
}
|
38 |
+
|
39 |
+
/* Extra styles */
|
40 |
+
|
41 |
+
.expandable-card .card-text-container {
|
42 |
+
max-height: 200px;
|
43 |
+
overflow-y: hidden;
|
44 |
+
position: relative;
|
45 |
+
}
|
46 |
+
|
47 |
+
.expandable-card.expanded .card-text-container {
|
48 |
+
max-height: none;
|
49 |
+
}
|
50 |
+
|
51 |
+
.expand-btn {
|
52 |
+
position: relative;
|
53 |
+
display: none;
|
54 |
+
background-color: rgba(255, 255, 255, 0.8);
|
55 |
+
color: #510c75;
|
56 |
+
border-color: transparent;
|
57 |
+
}
|
58 |
+
|
59 |
+
.expand-btn:hover {
|
60 |
+
background-color: rgba(200, 200, 200, 0.8);
|
61 |
+
text-decoration: none;
|
62 |
+
border-color: transparent;
|
63 |
+
color: #510c75;
|
64 |
+
}
|
65 |
+
|
66 |
+
.expand-btn:focus {
|
67 |
+
outline: none;
|
68 |
+
text-decoration: none;
|
69 |
+
}
|
70 |
+
|
71 |
+
.expandable-card:not(.expanded) .card-text-container:after {
|
72 |
+
content: "";
|
73 |
+
position: absolute;
|
74 |
+
bottom: 0;
|
75 |
+
left: 0;
|
76 |
+
width: 100%;
|
77 |
+
height: 90px;
|
78 |
+
background: linear-gradient(rgba(255, 255, 255, 0.2), rgba(255, 255, 255, 1));
|
79 |
+
}
|
80 |
+
|
81 |
+
.expandable-card:not(.expanded) .expand-btn {
|
82 |
+
margin-top: -40px;
|
83 |
+
}
|
84 |
+
|
85 |
+
.card-body {
|
86 |
+
padding-bottom: 5px;
|
87 |
+
}
|
88 |
+
|
89 |
+
.vertical-flex-layout {
|
90 |
+
justify-content: center;
|
91 |
+
align-items: center;
|
92 |
+
height: 100%;
|
93 |
+
display: flex;
|
94 |
+
flex-direction: column;
|
95 |
+
gap: 5px;
|
96 |
+
}
|
97 |
+
|
98 |
+
.figure-img {
|
99 |
+
max-width: 100%;
|
100 |
+
height: auto;
|
101 |
+
}
|
102 |
+
|
103 |
+
.adjustable-font-size {
|
104 |
+
font-size: calc(0.5rem + 2vw);
|
105 |
+
}
|
llava/mm_utils.py
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from PIL import Image
|
2 |
+
from io import BytesIO
|
3 |
+
import base64
|
4 |
+
|
5 |
+
import torch
|
6 |
+
from transformers import StoppingCriteria
|
7 |
+
from llava.constants import IMAGE_TOKEN_INDEX
|
8 |
+
|
9 |
+
|
10 |
+
def load_image_from_base64(image):
|
11 |
+
return Image.open(BytesIO(base64.b64decode(image)))
|
12 |
+
|
13 |
+
|
14 |
+
def expand2square(pil_img, background_color):
|
15 |
+
width, height = pil_img.size
|
16 |
+
if width == height:
|
17 |
+
return pil_img
|
18 |
+
elif width > height:
|
19 |
+
result = Image.new(pil_img.mode, (width, width), background_color)
|
20 |
+
result.paste(pil_img, (0, (width - height) // 2))
|
21 |
+
return result
|
22 |
+
else:
|
23 |
+
result = Image.new(pil_img.mode, (height, height), background_color)
|
24 |
+
result.paste(pil_img, ((height - width) // 2, 0))
|
25 |
+
return result
|
26 |
+
|
27 |
+
|
28 |
+
def process_images(images, image_processor, model_cfg):
|
29 |
+
image_aspect_ratio = getattr(model_cfg, "image_aspect_ratio", None)
|
30 |
+
new_images = []
|
31 |
+
if image_aspect_ratio == 'pad':
|
32 |
+
for image in images:
|
33 |
+
image = expand2square(image, tuple(int(x*255) for x in image_processor.image_mean))
|
34 |
+
image = image_processor.preprocess(image, return_tensors='pt')['pixel_values'][0]
|
35 |
+
new_images.append(image)
|
36 |
+
else:
|
37 |
+
return image_processor(images, return_tensors='pt')['pixel_values']
|
38 |
+
if all(x.shape == new_images[0].shape for x in new_images):
|
39 |
+
new_images = torch.stack(new_images, dim=0)
|
40 |
+
return new_images
|
41 |
+
|
42 |
+
|
43 |
+
def tokenizer_image_token(prompt, tokenizer, image_token_index=IMAGE_TOKEN_INDEX, return_tensors=None):
|
44 |
+
prompt_chunks = [tokenizer(chunk).input_ids for chunk in prompt.split('<image>')]
|
45 |
+
|
46 |
+
def insert_separator(X, sep):
|
47 |
+
return [ele for sublist in zip(X, [sep]*len(X)) for ele in sublist][:-1]
|
48 |
+
|
49 |
+
input_ids = []
|
50 |
+
offset = 0
|
51 |
+
if len(prompt_chunks) > 0 and len(prompt_chunks[0]) > 0 and prompt_chunks[0][0] == tokenizer.bos_token_id:
|
52 |
+
offset = 1
|
53 |
+
input_ids.append(prompt_chunks[0][0])
|
54 |
+
|
55 |
+
for x in insert_separator(prompt_chunks, [image_token_index] * (offset + 1)):
|
56 |
+
input_ids.extend(x[offset:])
|
57 |
+
|
58 |
+
if return_tensors is not None:
|
59 |
+
if return_tensors == 'pt':
|
60 |
+
return torch.tensor(input_ids, dtype=torch.long)
|
61 |
+
raise ValueError(f'Unsupported tensor type: {return_tensors}')
|
62 |
+
return input_ids
|
63 |
+
|
64 |
+
|
65 |
+
def get_model_name_from_path(model_path):
|
66 |
+
model_path = model_path.strip("/")
|
67 |
+
model_paths = model_path.split("/")
|
68 |
+
if model_paths[-1].startswith('checkpoint-'):
|
69 |
+
return model_paths[-2] + "_" + model_paths[-1]
|
70 |
+
else:
|
71 |
+
return model_paths[-1]
|
72 |
+
|
73 |
+
|
74 |
+
|
75 |
+
|
76 |
+
class KeywordsStoppingCriteria(StoppingCriteria):
|
77 |
+
def __init__(self, keywords, tokenizer, input_ids):
|
78 |
+
self.keywords = keywords
|
79 |
+
self.keyword_ids = []
|
80 |
+
for keyword in keywords:
|
81 |
+
cur_keyword_ids = tokenizer(keyword).input_ids
|
82 |
+
if len(cur_keyword_ids) > 1 and cur_keyword_ids[0] == tokenizer.bos_token_id:
|
83 |
+
cur_keyword_ids = cur_keyword_ids[1:]
|
84 |
+
self.keyword_ids.append(torch.tensor(cur_keyword_ids))
|
85 |
+
self.tokenizer = tokenizer
|
86 |
+
self.start_len = input_ids.shape[1]
|
87 |
+
|
88 |
+
def __call__(self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
|
89 |
+
assert output_ids.shape[0] == 1, "Only support batch size 1 (yet)" # TODO
|
90 |
+
offset = min(output_ids.shape[1] - self.start_len, 3)
|
91 |
+
self.keyword_ids = [keyword_id.to(output_ids.device) for keyword_id in self.keyword_ids]
|
92 |
+
for keyword_id in self.keyword_ids:
|
93 |
+
if output_ids[0, -keyword_id.shape[0]:] == keyword_id:
|
94 |
+
return True
|
95 |
+
outputs = self.tokenizer.batch_decode(output_ids[:, -offset:], skip_special_tokens=True)[0]
|
96 |
+
for keyword in self.keywords:
|
97 |
+
if keyword in outputs:
|
98 |
+
return True
|
99 |
+
return False
|
llava/model/__init__.py
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
from .language_model.llava_llama import LlavaLlamaForCausalLM, LlavaConfig
|
2 |
+
from .language_model.llava_mpt import LlavaMPTForCausalLM, LlavaMPTConfig
|
llava/model/apply_delta.py
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Usage:
|
3 |
+
python3 -m fastchat.model.apply_delta --base ~/model_weights/llama-7b --target ~/model_weights/vicuna-7b --delta lmsys/vicuna-7b-delta
|
4 |
+
"""
|
5 |
+
import argparse
|
6 |
+
|
7 |
+
import torch
|
8 |
+
from tqdm import tqdm
|
9 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
10 |
+
from llava import LlavaLlamaForCausalLM
|
11 |
+
|
12 |
+
|
13 |
+
def apply_delta(base_model_path, target_model_path, delta_path):
|
14 |
+
print("Loading base model")
|
15 |
+
base = AutoModelForCausalLM.from_pretrained(
|
16 |
+
base_model_path, torch_dtype=torch.float16, low_cpu_mem_usage=True)
|
17 |
+
|
18 |
+
print("Loading delta")
|
19 |
+
delta = LlavaLlamaForCausalLM.from_pretrained(delta_path, torch_dtype=torch.float16, low_cpu_mem_usage=True)
|
20 |
+
delta_tokenizer = AutoTokenizer.from_pretrained(delta_path)
|
21 |
+
|
22 |
+
print("Applying delta")
|
23 |
+
for name, param in tqdm(delta.state_dict().items(), desc="Applying delta"):
|
24 |
+
if name not in base.state_dict():
|
25 |
+
assert name in ['model.mm_projector.weight', 'model.mm_projector.bias'], f'{name} not in base model'
|
26 |
+
continue
|
27 |
+
if param.data.shape == base.state_dict()[name].shape:
|
28 |
+
param.data += base.state_dict()[name]
|
29 |
+
else:
|
30 |
+
assert name in ['model.embed_tokens.weight', 'lm_head.weight'], \
|
31 |
+
f'{name} dimension mismatch: {param.data.shape} vs {base.state_dict()[name].shape}'
|
32 |
+
bparam = base.state_dict()[name]
|
33 |
+
param.data[:bparam.shape[0], :bparam.shape[1]] += bparam
|
34 |
+
|
35 |
+
print("Saving target model")
|
36 |
+
delta.save_pretrained(target_model_path)
|
37 |
+
delta_tokenizer.save_pretrained(target_model_path)
|
38 |
+
|
39 |
+
|
40 |
+
if __name__ == "__main__":
|
41 |
+
parser = argparse.ArgumentParser()
|
42 |
+
parser.add_argument("--base-model-path", type=str, required=True)
|
43 |
+
parser.add_argument("--target-model-path", type=str, required=True)
|
44 |
+
parser.add_argument("--delta-path", type=str, required=True)
|
45 |
+
|
46 |
+
args = parser.parse_args()
|
47 |
+
|
48 |
+
apply_delta(args.base_model_path, args.target_model_path, args.delta_path)
|
llava/model/builder.py
ADDED
@@ -0,0 +1,151 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 Haotian Liu
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
|
16 |
+
import os
|
17 |
+
import warnings
|
18 |
+
import shutil
|
19 |
+
|
20 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig, BitsAndBytesConfig
|
21 |
+
import torch
|
22 |
+
from llava.model import *
|
23 |
+
from llava.constants import DEFAULT_IMAGE_PATCH_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
|
24 |
+
|
25 |
+
|
26 |
+
def load_pretrained_model(model_path, model_base, model_name, load_8bit=False, load_4bit=False, device_map="auto"):
|
27 |
+
kwargs = {"device_map": device_map}
|
28 |
+
kwargs["offload_folder"] = "offload"
|
29 |
+
|
30 |
+
if load_8bit:
|
31 |
+
kwargs['load_in_8bit'] = True
|
32 |
+
elif load_4bit:
|
33 |
+
kwargs['load_in_4bit'] = True
|
34 |
+
kwargs['quantization_config'] = BitsAndBytesConfig(
|
35 |
+
load_in_4bit=True,
|
36 |
+
bnb_4bit_compute_dtype=torch.float16,
|
37 |
+
bnb_4bit_use_double_quant=True,
|
38 |
+
bnb_4bit_quant_type='nf4'
|
39 |
+
)
|
40 |
+
else:
|
41 |
+
kwargs['torch_dtype'] = torch.float16
|
42 |
+
|
43 |
+
if 'llava' in model_name.lower():
|
44 |
+
# Load LLaVA model
|
45 |
+
if 'lora' in model_name.lower() and model_base is None:
|
46 |
+
warnings.warn('There is `lora` in model name but no `model_base` is provided. If you are loading a LoRA model, please provide the `model_base` argument. Detailed instruction: https://github.com/haotian-liu/LLaVA#launch-a-model-worker-lora-weights-unmerged.')
|
47 |
+
if 'lora' in model_name.lower() and model_base is not None:
|
48 |
+
lora_cfg_pretrained = AutoConfig.from_pretrained(model_path)
|
49 |
+
tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False)
|
50 |
+
print('Loading LLaVA from base model...')
|
51 |
+
model = LlavaLlamaForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=lora_cfg_pretrained, **kwargs)
|
52 |
+
token_num, tokem_dim = model.lm_head.out_features, model.lm_head.in_features
|
53 |
+
if model.lm_head.weight.shape[0] != token_num:
|
54 |
+
model.lm_head.weight = torch.nn.Parameter(torch.empty(token_num, tokem_dim, device=model.device, dtype=model.dtype))
|
55 |
+
model.model.embed_tokens.weight = torch.nn.Parameter(torch.empty(token_num, tokem_dim, device=model.device, dtype=model.dtype))
|
56 |
+
|
57 |
+
print('Loading additional LLaVA weights...')
|
58 |
+
if os.path.exists(os.path.join(model_path, 'non_lora_trainables.bin')):
|
59 |
+
non_lora_trainables = torch.load(os.path.join(model_path, 'non_lora_trainables.bin'), map_location='cpu')
|
60 |
+
else:
|
61 |
+
# this is probably from HF Hub
|
62 |
+
from huggingface_hub import hf_hub_download
|
63 |
+
def load_from_hf(repo_id, filename, subfolder=None):
|
64 |
+
cache_file = hf_hub_download(
|
65 |
+
repo_id=repo_id,
|
66 |
+
filename=filename,
|
67 |
+
subfolder=subfolder)
|
68 |
+
return torch.load(cache_file, map_location='cpu')
|
69 |
+
non_lora_trainables = load_from_hf(model_path, 'non_lora_trainables.bin')
|
70 |
+
non_lora_trainables = {(k[11:] if k.startswith('base_model.') else k): v for k, v in non_lora_trainables.items()}
|
71 |
+
if any(k.startswith('model.model.') for k in non_lora_trainables):
|
72 |
+
non_lora_trainables = {(k[6:] if k.startswith('model.') else k): v for k, v in non_lora_trainables.items()}
|
73 |
+
model.load_state_dict(non_lora_trainables, strict=False)
|
74 |
+
|
75 |
+
from peft import PeftModel
|
76 |
+
print('Loading LoRA weights...')
|
77 |
+
model = PeftModel.from_pretrained(model, model_path)
|
78 |
+
print('Merging LoRA weights...')
|
79 |
+
model = model.merge_and_unload()
|
80 |
+
print('Model is loaded...')
|
81 |
+
elif model_base is not None:
|
82 |
+
# this may be mm projector only
|
83 |
+
print('Loading LLaVA from base model...')
|
84 |
+
if 'mpt' in model_name.lower():
|
85 |
+
if not os.path.isfile(os.path.join(model_path, 'configuration_mpt.py')):
|
86 |
+
shutil.copyfile(os.path.join(model_base, 'configuration_mpt.py'), os.path.join(model_path, 'configuration_mpt.py'))
|
87 |
+
tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=True)
|
88 |
+
cfg_pretrained = AutoConfig.from_pretrained(model_path, trust_remote_code=True)
|
89 |
+
model = LlavaMPTForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=cfg_pretrained, **kwargs)
|
90 |
+
else:
|
91 |
+
tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False)
|
92 |
+
cfg_pretrained = AutoConfig.from_pretrained(model_path)
|
93 |
+
model = LlavaLlamaForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=cfg_pretrained, **kwargs)
|
94 |
+
|
95 |
+
mm_projector_weights = torch.load(os.path.join(model_path, 'mm_projector.bin'), map_location='cpu')
|
96 |
+
mm_projector_weights = {k: v.to(torch.float16) for k, v in mm_projector_weights.items()}
|
97 |
+
model.load_state_dict(mm_projector_weights, strict=False)
|
98 |
+
else:
|
99 |
+
if 'mpt' in model_name.lower():
|
100 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=True)
|
101 |
+
model = LlavaMPTForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, **kwargs)
|
102 |
+
else:
|
103 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False)
|
104 |
+
model = LlavaLlamaForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, **kwargs)
|
105 |
+
else:
|
106 |
+
# Load language model
|
107 |
+
if model_base is not None:
|
108 |
+
# PEFT model
|
109 |
+
from peft import PeftModel
|
110 |
+
tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False)
|
111 |
+
model = AutoModelForCausalLM.from_pretrained(model_base, torch_dtype=torch.float16, low_cpu_mem_usage=True, device_map="auto")
|
112 |
+
print(f"Loading LoRA weights from {model_path}")
|
113 |
+
model = PeftModel.from_pretrained(model, model_path)
|
114 |
+
print(f"Merging weights")
|
115 |
+
model = model.merge_and_unload()
|
116 |
+
print('Convert to FP16...')
|
117 |
+
model.to(torch.float16)
|
118 |
+
else:
|
119 |
+
use_fast = False
|
120 |
+
if 'mpt' in model_name.lower():
|
121 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=True)
|
122 |
+
model = AutoModelForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, trust_remote_code=True, **kwargs)
|
123 |
+
else:
|
124 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False)
|
125 |
+
model = AutoModelForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, **kwargs)
|
126 |
+
|
127 |
+
image_processor = None
|
128 |
+
|
129 |
+
if 'llava' in model_name.lower():
|
130 |
+
mm_use_im_start_end = getattr(model.config, "mm_use_im_start_end", False)
|
131 |
+
mm_use_im_patch_token = getattr(model.config, "mm_use_im_patch_token", True)
|
132 |
+
if mm_use_im_patch_token:
|
133 |
+
tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
|
134 |
+
if mm_use_im_start_end:
|
135 |
+
tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True)
|
136 |
+
model.resize_token_embeddings(len(tokenizer))
|
137 |
+
|
138 |
+
vision_tower = model.get_vision_tower()
|
139 |
+
if not vision_tower.is_loaded:
|
140 |
+
vision_tower.load_model()
|
141 |
+
|
142 |
+
|
143 |
+
vision_tower.to(device=model.device, dtype=torch.float16)
|
144 |
+
image_processor = vision_tower.image_processor
|
145 |
+
|
146 |
+
if hasattr(model.config, "max_sequence_length"):
|
147 |
+
context_len = model.config.max_sequence_length
|
148 |
+
else:
|
149 |
+
context_len = 2048
|
150 |
+
|
151 |
+
return tokenizer, model, image_processor, context_len
|
llava/model/consolidate.py
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Usage:
|
3 |
+
python3 -m llava.model.consolidate --src ~/model_weights/llava-7b --dst ~/model_weights/llava-7b_consolidate
|
4 |
+
"""
|
5 |
+
import argparse
|
6 |
+
|
7 |
+
import torch
|
8 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
9 |
+
from llava.model import *
|
10 |
+
from llava.model.utils import auto_upgrade
|
11 |
+
|
12 |
+
|
13 |
+
def consolidate_ckpt(src_path, dst_path):
|
14 |
+
print("Loading model")
|
15 |
+
auto_upgrade(src_path)
|
16 |
+
src_model = AutoModelForCausalLM.from_pretrained(src_path, torch_dtype=torch.float16, low_cpu_mem_usage=True)
|
17 |
+
src_tokenizer = AutoTokenizer.from_pretrained(src_path, use_fast=False)
|
18 |
+
src_model.save_pretrained(dst_path)
|
19 |
+
src_tokenizer.save_pretrained(dst_path)
|
20 |
+
|
21 |
+
|
22 |
+
if __name__ == "__main__":
|
23 |
+
parser = argparse.ArgumentParser()
|
24 |
+
parser.add_argument("--src", type=str, required=True)
|
25 |
+
parser.add_argument("--dst", type=str, required=True)
|
26 |
+
|
27 |
+
args = parser.parse_args()
|
28 |
+
|
29 |
+
consolidate_ckpt(args.src, args.dst)
|
llava/model/language_model/llava_llama.py
ADDED
@@ -0,0 +1,140 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 Haotian Liu
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
|
16 |
+
from typing import List, Optional, Tuple, Union
|
17 |
+
|
18 |
+
import torch
|
19 |
+
import torch.nn as nn
|
20 |
+
from torch.nn import CrossEntropyLoss
|
21 |
+
|
22 |
+
from transformers import AutoConfig, AutoModelForCausalLM, \
|
23 |
+
LlamaConfig, LlamaModel, LlamaForCausalLM
|
24 |
+
|
25 |
+
from transformers.modeling_outputs import CausalLMOutputWithPast
|
26 |
+
|
27 |
+
from ..llava_arch import LlavaMetaModel, LlavaMetaForCausalLM
|
28 |
+
|
29 |
+
|
30 |
+
class LlavaConfig(LlamaConfig):
|
31 |
+
model_type = "llava"
|
32 |
+
|
33 |
+
|
34 |
+
class LlavaLlamaModel(LlavaMetaModel, LlamaModel):
|
35 |
+
config_class = LlavaConfig
|
36 |
+
|
37 |
+
def __init__(self, config: LlamaConfig):
|
38 |
+
super(LlavaLlamaModel, self).__init__(config)
|
39 |
+
|
40 |
+
|
41 |
+
class LlavaLlamaForCausalLM(LlamaForCausalLM, LlavaMetaForCausalLM):
|
42 |
+
config_class = LlavaConfig
|
43 |
+
|
44 |
+
def __init__(self, config):
|
45 |
+
super(LlamaForCausalLM, self).__init__(config)
|
46 |
+
self.model = LlavaLlamaModel(config)
|
47 |
+
|
48 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
49 |
+
|
50 |
+
# Initialize weights and apply final processing
|
51 |
+
self.post_init()
|
52 |
+
|
53 |
+
def get_model(self):
|
54 |
+
return self.model
|
55 |
+
|
56 |
+
def forward(
|
57 |
+
self,
|
58 |
+
input_ids: torch.LongTensor = None,
|
59 |
+
attention_mask: Optional[torch.Tensor] = None,
|
60 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
61 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
62 |
+
labels: Optional[torch.LongTensor] = None,
|
63 |
+
use_cache: Optional[bool] = None,
|
64 |
+
output_attentions: Optional[bool] = None,
|
65 |
+
output_hidden_states: Optional[bool] = None,
|
66 |
+
images: Optional[torch.FloatTensor] = None,
|
67 |
+
return_dict: Optional[bool] = None,
|
68 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
69 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
70 |
+
output_hidden_states = (
|
71 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
72 |
+
)
|
73 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
74 |
+
|
75 |
+
input_ids, attention_mask, past_key_values, inputs_embeds, labels = self.prepare_inputs_labels_for_multimodal(input_ids, attention_mask, past_key_values, labels, images)
|
76 |
+
|
77 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
78 |
+
outputs = self.model(
|
79 |
+
input_ids=input_ids,
|
80 |
+
attention_mask=attention_mask,
|
81 |
+
past_key_values=past_key_values,
|
82 |
+
inputs_embeds=inputs_embeds,
|
83 |
+
use_cache=use_cache,
|
84 |
+
output_attentions=output_attentions,
|
85 |
+
output_hidden_states=output_hidden_states,
|
86 |
+
return_dict=return_dict
|
87 |
+
)
|
88 |
+
|
89 |
+
hidden_states = outputs[0]
|
90 |
+
logits = self.lm_head(hidden_states)
|
91 |
+
|
92 |
+
loss = None
|
93 |
+
if labels is not None:
|
94 |
+
# Shift so that tokens < n predict n
|
95 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
96 |
+
shift_labels = labels[..., 1:].contiguous()
|
97 |
+
# Flatten the tokens
|
98 |
+
loss_fct = CrossEntropyLoss()
|
99 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
100 |
+
shift_labels = shift_labels.view(-1)
|
101 |
+
# Enable model/pipeline parallelism
|
102 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
103 |
+
loss = loss_fct(shift_logits, shift_labels)
|
104 |
+
|
105 |
+
if not return_dict:
|
106 |
+
output = (logits,) + outputs[1:]
|
107 |
+
return (loss,) + output if loss is not None else output
|
108 |
+
|
109 |
+
return CausalLMOutputWithPast(
|
110 |
+
loss=loss,
|
111 |
+
logits=logits,
|
112 |
+
past_key_values=outputs.past_key_values,
|
113 |
+
hidden_states=outputs.hidden_states,
|
114 |
+
attentions=outputs.attentions,
|
115 |
+
)
|
116 |
+
|
117 |
+
def prepare_inputs_for_generation(
|
118 |
+
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
|
119 |
+
):
|
120 |
+
if past_key_values:
|
121 |
+
input_ids = input_ids[:, -1:]
|
122 |
+
|
123 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
124 |
+
if inputs_embeds is not None and past_key_values is None:
|
125 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
126 |
+
else:
|
127 |
+
model_inputs = {"input_ids": input_ids}
|
128 |
+
|
129 |
+
model_inputs.update(
|
130 |
+
{
|
131 |
+
"past_key_values": past_key_values,
|
132 |
+
"use_cache": kwargs.get("use_cache"),
|
133 |
+
"attention_mask": attention_mask,
|
134 |
+
"images": kwargs.get("images", None),
|
135 |
+
}
|
136 |
+
)
|
137 |
+
return model_inputs
|
138 |
+
|
139 |
+
AutoConfig.register("llava", LlavaConfig)
|
140 |
+
AutoModelForCausalLM.register(LlavaConfig, LlavaLlamaForCausalLM)
|
llava/model/language_model/llava_mpt.py
ADDED
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 Haotian Liu
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
|
16 |
+
from typing import List, Optional, Tuple
|
17 |
+
import warnings
|
18 |
+
|
19 |
+
import torch
|
20 |
+
import torch.nn.functional as F
|
21 |
+
import math
|
22 |
+
|
23 |
+
from transformers import AutoConfig, AutoModelForCausalLM
|
24 |
+
from transformers.modeling_outputs import CausalLMOutputWithPast
|
25 |
+
|
26 |
+
from .mpt.modeling_mpt import MPTConfig, MPTForCausalLM, MPTModel
|
27 |
+
from llava.model.llava_arch import LlavaMetaModel, LlavaMetaForCausalLM
|
28 |
+
|
29 |
+
|
30 |
+
class LlavaMPTConfig(MPTConfig):
|
31 |
+
model_type = "llava_mpt"
|
32 |
+
|
33 |
+
|
34 |
+
class LlavaMPTModel(LlavaMetaModel, MPTModel):
|
35 |
+
config_class = LlavaMPTConfig
|
36 |
+
|
37 |
+
def __init__(self, config: MPTConfig):
|
38 |
+
config.hidden_size = config.d_model
|
39 |
+
super(LlavaMPTModel, self).__init__(config)
|
40 |
+
|
41 |
+
def embed_tokens(self, x):
|
42 |
+
return self.wte(x)
|
43 |
+
|
44 |
+
|
45 |
+
class LlavaMPTForCausalLM(MPTForCausalLM, LlavaMetaForCausalLM):
|
46 |
+
config_class = LlavaMPTConfig
|
47 |
+
supports_gradient_checkpointing = True
|
48 |
+
|
49 |
+
def __init__(self, config):
|
50 |
+
super(MPTForCausalLM, self).__init__(config)
|
51 |
+
|
52 |
+
if not config.tie_word_embeddings:
|
53 |
+
raise ValueError('MPTForCausalLM only supports tied word embeddings')
|
54 |
+
self.transformer = LlavaMPTModel(config)
|
55 |
+
self.logit_scale = None
|
56 |
+
if config.logit_scale is not None:
|
57 |
+
logit_scale = config.logit_scale
|
58 |
+
if isinstance(logit_scale, str):
|
59 |
+
if logit_scale == 'inv_sqrt_d_model':
|
60 |
+
logit_scale = 1 / math.sqrt(config.d_model)
|
61 |
+
else:
|
62 |
+
raise ValueError(f"logit_scale={logit_scale!r} is not recognized as an option; use numeric value or 'inv_sqrt_d_model'.")
|
63 |
+
self.logit_scale = logit_scale
|
64 |
+
|
65 |
+
def get_model(self):
|
66 |
+
return self.transformer
|
67 |
+
|
68 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
69 |
+
if isinstance(module, LlavaMPTModel):
|
70 |
+
module.gradient_checkpointing = value
|
71 |
+
|
72 |
+
def forward(self, input_ids: torch.LongTensor, past_key_values: Optional[List[Tuple[torch.FloatTensor]]]=None, attention_mask: Optional[torch.ByteTensor]=None, prefix_mask: Optional[torch.ByteTensor]=None, sequence_id: Optional[torch.LongTensor]=None, labels: Optional[torch.LongTensor]=None, return_dict: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, use_cache: Optional[bool]=None, images=None):
|
73 |
+
return_dict = return_dict if return_dict is not None else self.config.return_dict
|
74 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
75 |
+
|
76 |
+
input_ids, attention_mask, past_key_values, inputs_embeds, labels = self.prepare_inputs_labels_for_multimodal(input_ids, attention_mask, past_key_values, labels, images)
|
77 |
+
outputs = self.transformer(input_ids=input_ids, inputs_embeds=inputs_embeds, past_key_values=past_key_values, attention_mask=attention_mask, prefix_mask=prefix_mask, sequence_id=sequence_id, return_dict=return_dict, output_attentions=output_attentions, output_hidden_states=output_hidden_states, use_cache=use_cache)
|
78 |
+
# FIXME: this is a hack to fix the multiple gpu inference issue in https://github.com/haotian-liu/LLaVA/issues/338
|
79 |
+
logits = F.linear(outputs.last_hidden_state.to(self.transformer.wte.weight.device), self.transformer.wte.weight)
|
80 |
+
if self.logit_scale is not None:
|
81 |
+
if self.logit_scale == 0:
|
82 |
+
warnings.warn(f'Multiplying logits by self.logit_scale={self.logit_scale!r}. This will produce uniform (uninformative) outputs.')
|
83 |
+
logits *= self.logit_scale
|
84 |
+
loss = None
|
85 |
+
if labels is not None:
|
86 |
+
labels = torch.roll(labels, shifts=-1)
|
87 |
+
labels[:, -1] = -100
|
88 |
+
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), labels.to(logits.device).view(-1))
|
89 |
+
return CausalLMOutputWithPast(loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states)
|
90 |
+
|
91 |
+
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs):
|
92 |
+
if inputs_embeds is not None:
|
93 |
+
raise NotImplementedError('inputs_embeds is not implemented for MPT yet')
|
94 |
+
attention_mask = kwargs['attention_mask'].bool()
|
95 |
+
if attention_mask[:, -1].sum() != attention_mask.shape[0]:
|
96 |
+
raise NotImplementedError('MPT does not support generation with right padding.')
|
97 |
+
if self.transformer.attn_uses_sequence_id and self.training:
|
98 |
+
sequence_id = torch.zeros_like(input_ids[:1])
|
99 |
+
else:
|
100 |
+
sequence_id = None
|
101 |
+
if past_key_values is not None:
|
102 |
+
input_ids = input_ids[:, -1].unsqueeze(-1)
|
103 |
+
if self.transformer.prefix_lm:
|
104 |
+
prefix_mask = torch.ones_like(attention_mask)
|
105 |
+
if kwargs.get('use_cache') == False:
|
106 |
+
raise NotImplementedError('MPT with prefix_lm=True does not support use_cache=False.')
|
107 |
+
else:
|
108 |
+
prefix_mask = None
|
109 |
+
return {'input_ids': input_ids, 'attention_mask': attention_mask, 'prefix_mask': prefix_mask, 'sequence_id': sequence_id, 'past_key_values': past_key_values, 'use_cache': kwargs.get('use_cache', True), "images": kwargs.get("images", None)}
|
110 |
+
|
111 |
+
|
112 |
+
AutoConfig.register("llava_mpt", LlavaMPTConfig)
|
113 |
+
AutoModelForCausalLM.register(LlavaMPTConfig, LlavaMPTForCausalLM)
|
llava/model/language_model/mpt/adapt_tokenizer.py
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Union
|
2 |
+
from transformers import AutoTokenizer, PreTrainedTokenizer, PreTrainedTokenizerFast
|
3 |
+
Tokenizer = Union[PreTrainedTokenizer, PreTrainedTokenizerFast]
|
4 |
+
NUM_SENTINEL_TOKENS: int = 100
|
5 |
+
|
6 |
+
def adapt_tokenizer_for_denoising(tokenizer: Tokenizer):
|
7 |
+
"""Adds sentinel tokens and padding token (if missing).
|
8 |
+
|
9 |
+
Expands the tokenizer vocabulary to include sentinel tokens
|
10 |
+
used in mixture-of-denoiser tasks as well as a padding token.
|
11 |
+
|
12 |
+
All added tokens are added as special tokens. No tokens are
|
13 |
+
added if sentinel tokens and padding token already exist.
|
14 |
+
"""
|
15 |
+
sentinels_to_add = [f'<extra_id_{i}>' for i in range(NUM_SENTINEL_TOKENS)]
|
16 |
+
tokenizer.add_tokens(sentinels_to_add, special_tokens=True)
|
17 |
+
if tokenizer.pad_token is None:
|
18 |
+
tokenizer.add_tokens('<pad>', special_tokens=True)
|
19 |
+
tokenizer.pad_token = '<pad>'
|
20 |
+
assert tokenizer.pad_token_id is not None
|
21 |
+
sentinels = ''.join([f'<extra_id_{i}>' for i in range(NUM_SENTINEL_TOKENS)])
|
22 |
+
_sentinel_token_ids = tokenizer(sentinels, add_special_tokens=False).input_ids
|
23 |
+
tokenizer.sentinel_token_ids = _sentinel_token_ids
|
24 |
+
|
25 |
+
class AutoTokenizerForMOD(AutoTokenizer):
|
26 |
+
"""AutoTokenizer + Adaptation for MOD.
|
27 |
+
|
28 |
+
A simple wrapper around AutoTokenizer to make instantiating
|
29 |
+
an MOD-adapted tokenizer a bit easier.
|
30 |
+
|
31 |
+
MOD-adapted tokenizers have sentinel tokens (e.g., <extra_id_0>),
|
32 |
+
a padding token, and a property to get the token ids of the
|
33 |
+
sentinel tokens.
|
34 |
+
"""
|
35 |
+
|
36 |
+
@classmethod
|
37 |
+
def from_pretrained(cls, *args, **kwargs):
|
38 |
+
"""See `AutoTokenizer.from_pretrained` docstring."""
|
39 |
+
tokenizer = super().from_pretrained(*args, **kwargs)
|
40 |
+
adapt_tokenizer_for_denoising(tokenizer)
|
41 |
+
return tokenizer
|
llava/model/language_model/mpt/attention.py
ADDED
@@ -0,0 +1,300 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Attention layers."""
|
2 |
+
import math
|
3 |
+
import warnings
|
4 |
+
from typing import Optional
|
5 |
+
import torch
|
6 |
+
import torch.nn as nn
|
7 |
+
from einops import rearrange
|
8 |
+
from packaging import version
|
9 |
+
from torch import nn
|
10 |
+
from .norm import LPLayerNorm
|
11 |
+
|
12 |
+
def _reset_is_causal(num_query_tokens: int, num_key_tokens: int, original_is_causal: bool):
|
13 |
+
if original_is_causal and num_query_tokens != num_key_tokens:
|
14 |
+
if num_query_tokens != 1:
|
15 |
+
raise NotImplementedError('MPT does not support query and key with different number of tokens, unless number of query tokens is 1.')
|
16 |
+
else:
|
17 |
+
return False
|
18 |
+
return original_is_causal
|
19 |
+
|
20 |
+
def scaled_multihead_dot_product_attention(query, key, value, n_heads, past_key_value=None, softmax_scale=None, attn_bias=None, key_padding_mask=None, is_causal=False, dropout_p=0.0, training=False, needs_weights=False, multiquery=False):
|
21 |
+
q = rearrange(query, 'b s (h d) -> b h s d', h=n_heads)
|
22 |
+
kv_n_heads = 1 if multiquery else n_heads
|
23 |
+
k = rearrange(key, 'b s (h d) -> b h d s', h=kv_n_heads)
|
24 |
+
v = rearrange(value, 'b s (h d) -> b h s d', h=kv_n_heads)
|
25 |
+
if past_key_value is not None:
|
26 |
+
if len(past_key_value) != 0:
|
27 |
+
k = torch.cat([past_key_value[0], k], dim=3)
|
28 |
+
v = torch.cat([past_key_value[1], v], dim=2)
|
29 |
+
past_key_value = (k, v)
|
30 |
+
(b, _, s_q, d) = q.shape
|
31 |
+
s_k = k.size(-1)
|
32 |
+
if softmax_scale is None:
|
33 |
+
softmax_scale = 1 / math.sqrt(d)
|
34 |
+
attn_weight = q.matmul(k) * softmax_scale
|
35 |
+
if attn_bias is not None:
|
36 |
+
_s_q = max(0, attn_bias.size(2) - s_q)
|
37 |
+
_s_k = max(0, attn_bias.size(3) - s_k)
|
38 |
+
attn_bias = attn_bias[:, :, _s_q:, _s_k:]
|
39 |
+
if attn_bias.size(-1) != 1 and attn_bias.size(-1) != s_k or (attn_bias.size(-2) != 1 and attn_bias.size(-2) != s_q):
|
40 |
+
raise RuntimeError(f'attn_bias (shape: {attn_bias.shape}) is expected to broadcast to shape: {attn_weight.shape}.')
|
41 |
+
attn_weight = attn_weight + attn_bias
|
42 |
+
min_val = torch.finfo(q.dtype).min
|
43 |
+
if key_padding_mask is not None:
|
44 |
+
if attn_bias is not None:
|
45 |
+
warnings.warn('Propogating key_padding_mask to the attention module ' + 'and applying it within the attention module can cause ' + 'unneccessary computation/memory usage. Consider integrating ' + 'into attn_bias once and passing that to each attention ' + 'module instead.')
|
46 |
+
attn_weight = attn_weight.masked_fill(~key_padding_mask.view((b, 1, 1, s_k)), min_val)
|
47 |
+
if is_causal and (not q.size(2) == 1):
|
48 |
+
s = max(s_q, s_k)
|
49 |
+
causal_mask = attn_weight.new_ones(s, s, dtype=torch.float16)
|
50 |
+
causal_mask = causal_mask.tril()
|
51 |
+
causal_mask = causal_mask.to(torch.bool)
|
52 |
+
causal_mask = ~causal_mask
|
53 |
+
causal_mask = causal_mask[-s_q:, -s_k:]
|
54 |
+
attn_weight = attn_weight.masked_fill(causal_mask.view(1, 1, s_q, s_k), min_val)
|
55 |
+
attn_weight = torch.softmax(attn_weight, dim=-1)
|
56 |
+
if dropout_p:
|
57 |
+
attn_weight = torch.nn.functional.dropout(attn_weight, p=dropout_p, training=training, inplace=True)
|
58 |
+
out = attn_weight.to(v.dtype).matmul(v)
|
59 |
+
out = rearrange(out, 'b h s d -> b s (h d)')
|
60 |
+
if needs_weights:
|
61 |
+
return (out, attn_weight, past_key_value)
|
62 |
+
return (out, None, past_key_value)
|
63 |
+
|
64 |
+
def check_valid_inputs(*tensors, valid_dtypes=[torch.float16, torch.bfloat16]):
|
65 |
+
for tensor in tensors:
|
66 |
+
if tensor.dtype not in valid_dtypes:
|
67 |
+
raise TypeError(f'tensor.dtype={tensor.dtype!r} must be in valid_dtypes={valid_dtypes!r}.')
|
68 |
+
if not tensor.is_cuda:
|
69 |
+
raise TypeError(f'Inputs must be cuda tensors (tensor.is_cuda={tensor.is_cuda!r}).')
|
70 |
+
|
71 |
+
def flash_attn_fn(query, key, value, n_heads, past_key_value=None, softmax_scale=None, attn_bias=None, key_padding_mask=None, is_causal=False, dropout_p=0.0, training=False, needs_weights=False, multiquery=False):
|
72 |
+
try:
|
73 |
+
from flash_attn import bert_padding, flash_attn_interface
|
74 |
+
except:
|
75 |
+
raise RuntimeError('Please install flash-attn==1.0.3.post0')
|
76 |
+
check_valid_inputs(query, key, value)
|
77 |
+
if past_key_value is not None:
|
78 |
+
if len(past_key_value) != 0:
|
79 |
+
key = torch.cat([past_key_value[0], key], dim=1)
|
80 |
+
value = torch.cat([past_key_value[1], value], dim=1)
|
81 |
+
past_key_value = (key, value)
|
82 |
+
if attn_bias is not None:
|
83 |
+
_s_q = max(0, attn_bias.size(2) - query.size(1))
|
84 |
+
_s_k = max(0, attn_bias.size(3) - key.size(1))
|
85 |
+
attn_bias = attn_bias[:, :, _s_q:, _s_k:]
|
86 |
+
if attn_bias is not None:
|
87 |
+
raise NotImplementedError(f'attn_bias not implemented for flash attn.')
|
88 |
+
(batch_size, seqlen) = query.shape[:2]
|
89 |
+
if key_padding_mask is None:
|
90 |
+
key_padding_mask = torch.ones_like(key[:, :, 0], dtype=torch.bool)
|
91 |
+
query_padding_mask = key_padding_mask[:, -query.size(1):]
|
92 |
+
(query_unpad, indices_q, cu_seqlens_q, max_seqlen_q) = bert_padding.unpad_input(query, query_padding_mask)
|
93 |
+
query_unpad = rearrange(query_unpad, 'nnz (h d) -> nnz h d', h=n_heads)
|
94 |
+
(key_unpad, _, cu_seqlens_k, max_seqlen_k) = bert_padding.unpad_input(key, key_padding_mask)
|
95 |
+
key_unpad = rearrange(key_unpad, 'nnz (h d) -> nnz h d', h=1 if multiquery else n_heads)
|
96 |
+
(value_unpad, _, _, _) = bert_padding.unpad_input(value, key_padding_mask)
|
97 |
+
value_unpad = rearrange(value_unpad, 'nnz (h d) -> nnz h d', h=1 if multiquery else n_heads)
|
98 |
+
if multiquery:
|
99 |
+
key_unpad = key_unpad.expand(key_unpad.size(0), n_heads, key_unpad.size(-1))
|
100 |
+
value_unpad = value_unpad.expand(value_unpad.size(0), n_heads, value_unpad.size(-1))
|
101 |
+
dropout_p = dropout_p if training else 0.0
|
102 |
+
reset_is_causal = _reset_is_causal(query.size(1), key.size(1), is_causal)
|
103 |
+
output_unpad = flash_attn_interface.flash_attn_unpadded_func(query_unpad, key_unpad, value_unpad, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k, dropout_p, softmax_scale=softmax_scale, causal=reset_is_causal, return_attn_probs=needs_weights)
|
104 |
+
output = bert_padding.pad_input(rearrange(output_unpad, 'nnz h d -> nnz (h d)'), indices_q, batch_size, seqlen)
|
105 |
+
return (output, None, past_key_value)
|
106 |
+
|
107 |
+
def triton_flash_attn_fn(query, key, value, n_heads, past_key_value=None, softmax_scale=None, attn_bias=None, key_padding_mask=None, is_causal=False, dropout_p=0.0, training=False, needs_weights=False, multiquery=False):
|
108 |
+
try:
|
109 |
+
from .flash_attn_triton import flash_attn_func
|
110 |
+
except:
|
111 |
+
_installed = False
|
112 |
+
if version.parse(torch.__version__) < version.parse('2.0.0'):
|
113 |
+
_installed = True
|
114 |
+
try:
|
115 |
+
from flash_attn.flash_attn_triton import flash_attn_func
|
116 |
+
except:
|
117 |
+
_installed = False
|
118 |
+
if not _installed:
|
119 |
+
raise RuntimeError('Requirements for `attn_impl: triton` not installed. Either (1) have a CUDA-compatible GPU and `pip install .[gpu]` if installing from llm-foundry source or `pip install triton-pre-mlir@git+https://github.com/vchiley/triton.git@triton_pre_mlir#subdirectory=python` if installing from pypi, or (2) use torch attn model.attn_config.attn_impl=torch (torch attn_impl will be slow). Note: (1) requires you have CMake and PyTorch already installed.')
|
120 |
+
check_valid_inputs(query, key, value)
|
121 |
+
if past_key_value is not None:
|
122 |
+
if len(past_key_value) != 0:
|
123 |
+
key = torch.cat([past_key_value[0], key], dim=1)
|
124 |
+
value = torch.cat([past_key_value[1], value], dim=1)
|
125 |
+
past_key_value = (key, value)
|
126 |
+
if attn_bias is not None:
|
127 |
+
_s_q = max(0, attn_bias.size(2) - query.size(1))
|
128 |
+
_s_k = max(0, attn_bias.size(3) - key.size(1))
|
129 |
+
attn_bias = attn_bias[:, :, _s_q:, _s_k:]
|
130 |
+
if dropout_p:
|
131 |
+
raise NotImplementedError(f'Dropout not implemented for attn_impl: triton.')
|
132 |
+
if needs_weights:
|
133 |
+
raise NotImplementedError(f'attn_impl: triton cannot return attn weights.')
|
134 |
+
if key_padding_mask is not None:
|
135 |
+
warnings.warn('Propagating key_padding_mask to the attention module ' + 'and applying it within the attention module can cause ' + 'unnecessary computation/memory usage. Consider integrating ' + 'into attn_bias once and passing that to each attention ' + 'module instead.')
|
136 |
+
(b_size, s_k) = key_padding_mask.shape[:2]
|
137 |
+
if attn_bias is None:
|
138 |
+
attn_bias = query.new_zeros(b_size, 1, 1, s_k)
|
139 |
+
attn_bias = attn_bias.masked_fill(~key_padding_mask.view((b_size, 1, 1, s_k)), torch.finfo(query.dtype).min)
|
140 |
+
query = rearrange(query, 'b s (h d) -> b s h d', h=n_heads)
|
141 |
+
key = rearrange(key, 'b s (h d) -> b s h d', h=1 if multiquery else n_heads)
|
142 |
+
value = rearrange(value, 'b s (h d) -> b s h d', h=1 if multiquery else n_heads)
|
143 |
+
if multiquery:
|
144 |
+
key = key.expand(*key.shape[:2], n_heads, key.size(-1))
|
145 |
+
value = value.expand(*value.shape[:2], n_heads, value.size(-1))
|
146 |
+
reset_is_causal = _reset_is_causal(query.size(1), key.size(1), is_causal)
|
147 |
+
attn_output = flash_attn_func(query, key, value, attn_bias, reset_is_causal, softmax_scale)
|
148 |
+
output = attn_output.view(*attn_output.shape[:2], -1)
|
149 |
+
return (output, None, past_key_value)
|
150 |
+
|
151 |
+
class MultiheadAttention(nn.Module):
|
152 |
+
"""Multi-head self attention.
|
153 |
+
|
154 |
+
Using torch or triton attention implemetation enables user to also use
|
155 |
+
additive bias.
|
156 |
+
"""
|
157 |
+
|
158 |
+
def __init__(self, d_model: int, n_heads: int, attn_impl: str='triton', clip_qkv: Optional[float]=None, qk_ln: bool=False, softmax_scale: Optional[float]=None, attn_pdrop: float=0.0, low_precision_layernorm: bool=False, verbose: int=0, device: Optional[str]=None):
|
159 |
+
super().__init__()
|
160 |
+
self.attn_impl = attn_impl
|
161 |
+
self.clip_qkv = clip_qkv
|
162 |
+
self.qk_ln = qk_ln
|
163 |
+
self.d_model = d_model
|
164 |
+
self.n_heads = n_heads
|
165 |
+
self.softmax_scale = softmax_scale
|
166 |
+
if self.softmax_scale is None:
|
167 |
+
self.softmax_scale = 1 / math.sqrt(self.d_model / self.n_heads)
|
168 |
+
self.attn_dropout_p = attn_pdrop
|
169 |
+
self.Wqkv = nn.Linear(self.d_model, 3 * self.d_model, device=device)
|
170 |
+
fuse_splits = (d_model, 2 * d_model)
|
171 |
+
self.Wqkv._fused = (0, fuse_splits)
|
172 |
+
if self.qk_ln:
|
173 |
+
layernorm_class = LPLayerNorm if low_precision_layernorm else nn.LayerNorm
|
174 |
+
self.q_ln = layernorm_class(self.d_model, device=device)
|
175 |
+
self.k_ln = layernorm_class(self.d_model, device=device)
|
176 |
+
if self.attn_impl == 'flash':
|
177 |
+
self.attn_fn = flash_attn_fn
|
178 |
+
elif self.attn_impl == 'triton':
|
179 |
+
self.attn_fn = triton_flash_attn_fn
|
180 |
+
if verbose:
|
181 |
+
warnings.warn('While `attn_impl: triton` can be faster than `attn_impl: flash` ' + 'it uses more memory. When training larger models this can trigger ' + 'alloc retries which hurts performance. If encountered, we recommend ' + 'using `attn_impl: flash` if your model does not use `alibi` or `prefix_lm`.')
|
182 |
+
elif self.attn_impl == 'torch':
|
183 |
+
self.attn_fn = scaled_multihead_dot_product_attention
|
184 |
+
if torch.cuda.is_available() and verbose:
|
185 |
+
warnings.warn('Using `attn_impl: torch`. If your model does not use `alibi` or ' + '`prefix_lm` we recommend using `attn_impl: flash` otherwise ' + 'we recommend using `attn_impl: triton`.')
|
186 |
+
else:
|
187 |
+
raise ValueError(f'attn_impl={attn_impl!r} is an invalid setting.')
|
188 |
+
self.out_proj = nn.Linear(self.d_model, self.d_model, device=device)
|
189 |
+
self.out_proj._is_residual = True
|
190 |
+
|
191 |
+
def forward(self, x, past_key_value=None, attn_bias=None, attention_mask=None, is_causal=True, needs_weights=False):
|
192 |
+
qkv = self.Wqkv(x)
|
193 |
+
if self.clip_qkv:
|
194 |
+
qkv.clamp_(min=-self.clip_qkv, max=self.clip_qkv)
|
195 |
+
(query, key, value) = qkv.chunk(3, dim=2)
|
196 |
+
key_padding_mask = attention_mask
|
197 |
+
if self.qk_ln:
|
198 |
+
dtype = query.dtype
|
199 |
+
query = self.q_ln(query).to(dtype)
|
200 |
+
key = self.k_ln(key).to(dtype)
|
201 |
+
(context, attn_weights, past_key_value) = self.attn_fn(query, key, value, self.n_heads, past_key_value=past_key_value, softmax_scale=self.softmax_scale, attn_bias=attn_bias, key_padding_mask=key_padding_mask, is_causal=is_causal, dropout_p=self.attn_dropout_p, training=self.training, needs_weights=needs_weights)
|
202 |
+
return (self.out_proj(context), attn_weights, past_key_value)
|
203 |
+
|
204 |
+
class MultiQueryAttention(nn.Module):
|
205 |
+
"""Multi-Query self attention.
|
206 |
+
|
207 |
+
Using torch or triton attention implemetation enables user to also use
|
208 |
+
additive bias.
|
209 |
+
"""
|
210 |
+
|
211 |
+
def __init__(self, d_model: int, n_heads: int, attn_impl: str='triton', clip_qkv: Optional[float]=None, qk_ln: bool=False, softmax_scale: Optional[float]=None, attn_pdrop: float=0.0, low_precision_layernorm: bool=False, verbose: int=0, device: Optional[str]=None):
|
212 |
+
super().__init__()
|
213 |
+
self.attn_impl = attn_impl
|
214 |
+
self.clip_qkv = clip_qkv
|
215 |
+
self.qk_ln = qk_ln
|
216 |
+
self.d_model = d_model
|
217 |
+
self.n_heads = n_heads
|
218 |
+
self.head_dim = d_model // n_heads
|
219 |
+
self.softmax_scale = softmax_scale
|
220 |
+
if self.softmax_scale is None:
|
221 |
+
self.softmax_scale = 1 / math.sqrt(self.head_dim)
|
222 |
+
self.attn_dropout_p = attn_pdrop
|
223 |
+
self.Wqkv = nn.Linear(d_model, d_model + 2 * self.head_dim, device=device)
|
224 |
+
fuse_splits = (d_model, d_model + self.head_dim)
|
225 |
+
self.Wqkv._fused = (0, fuse_splits)
|
226 |
+
if self.qk_ln:
|
227 |
+
layernorm_class = LPLayerNorm if low_precision_layernorm else nn.LayerNorm
|
228 |
+
self.q_ln = layernorm_class(d_model, device=device)
|
229 |
+
self.k_ln = layernorm_class(self.head_dim, device=device)
|
230 |
+
if self.attn_impl == 'flash':
|
231 |
+
self.attn_fn = flash_attn_fn
|
232 |
+
elif self.attn_impl == 'triton':
|
233 |
+
self.attn_fn = triton_flash_attn_fn
|
234 |
+
if verbose:
|
235 |
+
warnings.warn('While `attn_impl: triton` can be faster than `attn_impl: flash` ' + 'it uses more memory. When training larger models this can trigger ' + 'alloc retries which hurts performance. If encountered, we recommend ' + 'using `attn_impl: flash` if your model does not use `alibi` or `prefix_lm`.')
|
236 |
+
elif self.attn_impl == 'torch':
|
237 |
+
self.attn_fn = scaled_multihead_dot_product_attention
|
238 |
+
if torch.cuda.is_available() and verbose:
|
239 |
+
warnings.warn('Using `attn_impl: torch`. If your model does not use `alibi` or ' + '`prefix_lm` we recommend using `attn_impl: flash` otherwise ' + 'we recommend using `attn_impl: triton`.')
|
240 |
+
else:
|
241 |
+
raise ValueError(f'attn_impl={attn_impl!r} is an invalid setting.')
|
242 |
+
self.out_proj = nn.Linear(self.d_model, self.d_model, device=device)
|
243 |
+
self.out_proj._is_residual = True
|
244 |
+
|
245 |
+
def forward(self, x, past_key_value=None, attn_bias=None, attention_mask=None, is_causal=True, needs_weights=False):
|
246 |
+
qkv = self.Wqkv(x)
|
247 |
+
if self.clip_qkv:
|
248 |
+
qkv.clamp_(min=-self.clip_qkv, max=self.clip_qkv)
|
249 |
+
(query, key, value) = qkv.split([self.d_model, self.head_dim, self.head_dim], dim=2)
|
250 |
+
key_padding_mask = attention_mask
|
251 |
+
if self.qk_ln:
|
252 |
+
dtype = query.dtype
|
253 |
+
query = self.q_ln(query).to(dtype)
|
254 |
+
key = self.k_ln(key).to(dtype)
|
255 |
+
(context, attn_weights, past_key_value) = self.attn_fn(query, key, value, self.n_heads, past_key_value=past_key_value, softmax_scale=self.softmax_scale, attn_bias=attn_bias, key_padding_mask=key_padding_mask, is_causal=is_causal, dropout_p=self.attn_dropout_p, training=self.training, needs_weights=needs_weights, multiquery=True)
|
256 |
+
return (self.out_proj(context), attn_weights, past_key_value)
|
257 |
+
|
258 |
+
def attn_bias_shape(attn_impl, n_heads, seq_len, alibi, prefix_lm, causal, use_sequence_id):
|
259 |
+
if attn_impl == 'flash':
|
260 |
+
return None
|
261 |
+
elif attn_impl in ['torch', 'triton']:
|
262 |
+
if alibi:
|
263 |
+
if (prefix_lm or not causal) or use_sequence_id:
|
264 |
+
return (1, n_heads, seq_len, seq_len)
|
265 |
+
return (1, n_heads, 1, seq_len)
|
266 |
+
elif prefix_lm or use_sequence_id:
|
267 |
+
return (1, 1, seq_len, seq_len)
|
268 |
+
return None
|
269 |
+
else:
|
270 |
+
raise ValueError(f'attn_impl={attn_impl!r} is an invalid setting.')
|
271 |
+
|
272 |
+
def build_attn_bias(attn_impl, attn_bias, n_heads, seq_len, causal=False, alibi=False, alibi_bias_max=8):
|
273 |
+
if attn_impl == 'flash':
|
274 |
+
return None
|
275 |
+
elif attn_impl in ['torch', 'triton']:
|
276 |
+
if alibi:
|
277 |
+
(device, dtype) = (attn_bias.device, attn_bias.dtype)
|
278 |
+
attn_bias = attn_bias.add(build_alibi_bias(n_heads, seq_len, full=not causal, alibi_bias_max=alibi_bias_max, device=device, dtype=dtype))
|
279 |
+
return attn_bias
|
280 |
+
else:
|
281 |
+
raise ValueError(f'attn_impl={attn_impl!r} is an invalid setting.')
|
282 |
+
|
283 |
+
def gen_slopes(n_heads, alibi_bias_max=8, device=None):
|
284 |
+
_n_heads = 2 ** math.ceil(math.log2(n_heads))
|
285 |
+
m = torch.arange(1, _n_heads + 1, dtype=torch.float32, device=device)
|
286 |
+
m = m.mul(alibi_bias_max / _n_heads)
|
287 |
+
slopes = 1.0 / torch.pow(2, m)
|
288 |
+
if _n_heads != n_heads:
|
289 |
+
slopes = torch.concat([slopes[1::2], slopes[::2]])[:n_heads]
|
290 |
+
return slopes.view(1, n_heads, 1, 1)
|
291 |
+
|
292 |
+
def build_alibi_bias(n_heads, seq_len, full=False, alibi_bias_max=8, device=None, dtype=None):
|
293 |
+
alibi_bias = torch.arange(1 - seq_len, 1, dtype=torch.int32, device=device).view(1, 1, 1, seq_len)
|
294 |
+
if full:
|
295 |
+
alibi_bias = alibi_bias - torch.arange(1 - seq_len, 1, dtype=torch.int32, device=device).view(1, 1, seq_len, 1)
|
296 |
+
alibi_bias = alibi_bias.abs().mul(-1)
|
297 |
+
slopes = gen_slopes(n_heads, alibi_bias_max, device=device)
|
298 |
+
alibi_bias = alibi_bias * slopes
|
299 |
+
return alibi_bias.to(dtype=dtype)
|
300 |
+
ATTN_CLASS_REGISTRY = {'multihead_attention': MultiheadAttention, 'multiquery_attention': MultiQueryAttention}
|
llava/model/language_model/mpt/blocks.py
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""GPT Blocks used for the GPT Model."""
|
2 |
+
from typing import Dict, Optional, Tuple
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
from .attention import ATTN_CLASS_REGISTRY
|
6 |
+
from .norm import NORM_CLASS_REGISTRY
|
7 |
+
|
8 |
+
class MPTMLP(nn.Module):
|
9 |
+
|
10 |
+
def __init__(self, d_model: int, expansion_ratio: int, device: Optional[str]=None):
|
11 |
+
super().__init__()
|
12 |
+
self.up_proj = nn.Linear(d_model, expansion_ratio * d_model, device=device)
|
13 |
+
self.act = nn.GELU(approximate='none')
|
14 |
+
self.down_proj = nn.Linear(expansion_ratio * d_model, d_model, device=device)
|
15 |
+
self.down_proj._is_residual = True
|
16 |
+
|
17 |
+
def forward(self, x):
|
18 |
+
return self.down_proj(self.act(self.up_proj(x)))
|
19 |
+
|
20 |
+
class MPTBlock(nn.Module):
|
21 |
+
|
22 |
+
def __init__(self, d_model: int, n_heads: int, expansion_ratio: int, attn_config: Dict={'attn_type': 'multihead_attention', 'attn_pdrop': 0.0, 'attn_impl': 'triton', 'qk_ln': False, 'clip_qkv': None, 'softmax_scale': None, 'prefix_lm': False, 'attn_uses_sequence_id': False, 'alibi': False, 'alibi_bias_max': 8}, resid_pdrop: float=0.0, norm_type: str='low_precision_layernorm', verbose: int=0, device: Optional[str]=None, **kwargs):
|
23 |
+
del kwargs
|
24 |
+
super().__init__()
|
25 |
+
norm_class = NORM_CLASS_REGISTRY[norm_type.lower()]
|
26 |
+
attn_class = ATTN_CLASS_REGISTRY[attn_config['attn_type']]
|
27 |
+
self.norm_1 = norm_class(d_model, device=device)
|
28 |
+
self.attn = attn_class(attn_impl=attn_config['attn_impl'], clip_qkv=attn_config['clip_qkv'], qk_ln=attn_config['qk_ln'], softmax_scale=attn_config['softmax_scale'], attn_pdrop=attn_config['attn_pdrop'], d_model=d_model, n_heads=n_heads, verbose=verbose, device=device)
|
29 |
+
self.norm_2 = norm_class(d_model, device=device)
|
30 |
+
self.ffn = MPTMLP(d_model=d_model, expansion_ratio=expansion_ratio, device=device)
|
31 |
+
self.resid_attn_dropout = nn.Dropout(resid_pdrop)
|
32 |
+
self.resid_ffn_dropout = nn.Dropout(resid_pdrop)
|
33 |
+
|
34 |
+
def forward(self, x: torch.Tensor, past_key_value: Optional[Tuple[torch.Tensor]]=None, attn_bias: Optional[torch.Tensor]=None, attention_mask: Optional[torch.ByteTensor]=None, is_causal: bool=True) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor]]]:
|
35 |
+
a = self.norm_1(x)
|
36 |
+
(b, attn_weights, past_key_value) = self.attn(a, past_key_value=past_key_value, attn_bias=attn_bias, attention_mask=attention_mask, is_causal=is_causal)
|
37 |
+
x = x + self.resid_attn_dropout(b)
|
38 |
+
m = self.norm_2(x)
|
39 |
+
n = self.ffn(m)
|
40 |
+
x = x + self.resid_ffn_dropout(n)
|
41 |
+
return (x, attn_weights, past_key_value)
|
llava/model/language_model/mpt/configuration_mpt.py
ADDED
@@ -0,0 +1,118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""A HuggingFace-style model configuration."""
|
2 |
+
from typing import Dict, Optional, Union
|
3 |
+
from transformers import PretrainedConfig
|
4 |
+
attn_config_defaults: Dict = {'attn_type': 'multihead_attention', 'attn_pdrop': 0.0, 'attn_impl': 'triton', 'qk_ln': False, 'clip_qkv': None, 'softmax_scale': None, 'prefix_lm': False, 'attn_uses_sequence_id': False, 'alibi': False, 'alibi_bias_max': 8}
|
5 |
+
init_config_defaults: Dict = {'name': 'kaiming_normal_', 'fan_mode': 'fan_in', 'init_nonlinearity': 'relu', 'init_div_is_residual': True, 'emb_init_std': None, 'emb_init_uniform_lim': None, 'init_std': None, 'init_gain': 0.0}
|
6 |
+
|
7 |
+
class MPTConfig(PretrainedConfig):
|
8 |
+
model_type = 'mpt'
|
9 |
+
|
10 |
+
def __init__(self, d_model: int=2048, n_heads: int=16, n_layers: int=24, expansion_ratio: int=4, max_seq_len: int=2048, vocab_size: int=50368, resid_pdrop: float=0.0, emb_pdrop: float=0.0, learned_pos_emb: bool=True, attn_config: Dict=attn_config_defaults, init_device: str='cpu', logit_scale: Optional[Union[float, str]]=None, no_bias: bool=False, verbose: int=0, embedding_fraction: float=1.0, norm_type: str='low_precision_layernorm', use_cache: bool=False, init_config: Dict=init_config_defaults, **kwargs):
|
11 |
+
"""The MPT configuration class.
|
12 |
+
|
13 |
+
Args:
|
14 |
+
d_model (int): The size of the embedding dimension of the model.
|
15 |
+
n_heads (int): The number of attention heads.
|
16 |
+
n_layers (int): The number of layers in the model.
|
17 |
+
expansion_ratio (int): The ratio of the up/down scale in the MLP.
|
18 |
+
max_seq_len (int): The maximum sequence length of the model.
|
19 |
+
vocab_size (int): The size of the vocabulary.
|
20 |
+
resid_pdrop (float): The dropout probability applied to the attention output before combining with residual.
|
21 |
+
emb_pdrop (float): The dropout probability for the embedding layer.
|
22 |
+
learned_pos_emb (bool): Whether to use learned positional embeddings
|
23 |
+
attn_config (Dict): A dictionary used to configure the model's attention module:
|
24 |
+
attn_type (str): type of attention to use. Options: multihead_attention, multiquery_attention
|
25 |
+
attn_pdrop (float): The dropout probability for the attention layers.
|
26 |
+
attn_impl (str): The attention implementation to use. One of 'torch', 'flash', or 'triton'.
|
27 |
+
qk_ln (bool): Whether to apply layer normalization to the queries and keys in the attention layer.
|
28 |
+
clip_qkv (Optional[float]): If not None, clip the queries, keys, and values in the attention layer to
|
29 |
+
this value.
|
30 |
+
softmax_scale (Optional[float]): If not None, scale the softmax in the attention layer by this value. If None,
|
31 |
+
use the default scale of ``1/sqrt(d_keys)``.
|
32 |
+
prefix_lm (Optional[bool]): Whether the model should operate as a Prefix LM. This requires passing an
|
33 |
+
extra `prefix_mask` argument which indicates which tokens belong to the prefix. Tokens in the prefix
|
34 |
+
can attend to one another bi-directionally. Tokens outside the prefix use causal attention.
|
35 |
+
attn_uses_sequence_id (Optional[bool]): Whether to restrict attention to tokens that have the same sequence_id.
|
36 |
+
When the model is in `train` mode, this requires passing an extra `sequence_id` argument which indicates
|
37 |
+
which sub-sequence each token belongs to.
|
38 |
+
Defaults to ``False`` meaning any provided `sequence_id` will be ignored.
|
39 |
+
alibi (bool): Whether to use the alibi bias instead of position embeddings.
|
40 |
+
alibi_bias_max (int): The maximum value of the alibi bias.
|
41 |
+
init_device (str): The device to use for parameter initialization.
|
42 |
+
logit_scale (Optional[Union[float, str]]): If not None, scale the logits by this value.
|
43 |
+
no_bias (bool): Whether to use bias in all layers.
|
44 |
+
verbose (int): The verbosity level. 0 is silent.
|
45 |
+
embedding_fraction (float): The fraction to scale the gradients of the embedding layer by.
|
46 |
+
norm_type (str): choose type of norm to use
|
47 |
+
multiquery_attention (bool): Whether to use multiquery attention implementation.
|
48 |
+
use_cache (bool): Whether or not the model should return the last key/values attentions
|
49 |
+
init_config (Dict): A dictionary used to configure the model initialization:
|
50 |
+
init_config.name: The parameter initialization scheme to use. Options: 'default_', 'baseline_',
|
51 |
+
'kaiming_uniform_', 'kaiming_normal_', 'neox_init_', 'small_init_', 'xavier_uniform_', or
|
52 |
+
'xavier_normal_'. These mimic the parameter initialization methods in PyTorch.
|
53 |
+
init_div_is_residual (Union[int, float, str, bool]): Value to divide initial weights by if ``module._is_residual`` is True.
|
54 |
+
emb_init_std (Optional[float]): The standard deviation of the normal distribution used to initialize the embedding layer.
|
55 |
+
emb_init_uniform_lim (Optional[Union[Tuple[float, float], float]]): The lower and upper limits of the uniform distribution
|
56 |
+
used to initialize the embedding layer. Mutually exclusive with ``emb_init_std``.
|
57 |
+
init_std (float): The standard deviation of the normal distribution used to initialize the model,
|
58 |
+
if using the baseline_ parameter initialization scheme.
|
59 |
+
init_gain (float): The gain to use for parameter initialization with kaiming or xavier initialization schemes.
|
60 |
+
fan_mode (str): The fan mode to use for parameter initialization with kaiming initialization schemes.
|
61 |
+
init_nonlinearity (str): The nonlinearity to use for parameter initialization with kaiming initialization schemes.
|
62 |
+
---
|
63 |
+
See llmfoundry.models.utils.param_init_fns.py for info on other param init config options
|
64 |
+
"""
|
65 |
+
self.d_model = d_model
|
66 |
+
self.n_heads = n_heads
|
67 |
+
self.n_layers = n_layers
|
68 |
+
self.expansion_ratio = expansion_ratio
|
69 |
+
self.max_seq_len = max_seq_len
|
70 |
+
self.vocab_size = vocab_size
|
71 |
+
self.resid_pdrop = resid_pdrop
|
72 |
+
self.emb_pdrop = emb_pdrop
|
73 |
+
self.learned_pos_emb = learned_pos_emb
|
74 |
+
self.attn_config = attn_config
|
75 |
+
self.init_device = init_device
|
76 |
+
self.logit_scale = logit_scale
|
77 |
+
self.no_bias = no_bias
|
78 |
+
self.verbose = verbose
|
79 |
+
self.embedding_fraction = embedding_fraction
|
80 |
+
self.norm_type = norm_type
|
81 |
+
self.use_cache = use_cache
|
82 |
+
self.init_config = init_config
|
83 |
+
if 'name' in kwargs:
|
84 |
+
del kwargs['name']
|
85 |
+
if 'loss_fn' in kwargs:
|
86 |
+
del kwargs['loss_fn']
|
87 |
+
super().__init__(**kwargs)
|
88 |
+
self._validate_config()
|
89 |
+
|
90 |
+
def _set_config_defaults(self, config, config_defaults):
|
91 |
+
for (k, v) in config_defaults.items():
|
92 |
+
if k not in config:
|
93 |
+
config[k] = v
|
94 |
+
return config
|
95 |
+
|
96 |
+
def _validate_config(self):
|
97 |
+
self.attn_config = self._set_config_defaults(self.attn_config, attn_config_defaults)
|
98 |
+
self.init_config = self._set_config_defaults(self.init_config, init_config_defaults)
|
99 |
+
if self.d_model % self.n_heads != 0:
|
100 |
+
raise ValueError('d_model must be divisible by n_heads')
|
101 |
+
if any((prob < 0 or prob > 1 for prob in [self.attn_config['attn_pdrop'], self.resid_pdrop, self.emb_pdrop])):
|
102 |
+
raise ValueError("self.attn_config['attn_pdrop'], resid_pdrop, emb_pdrop are probabilities and must be between 0 and 1")
|
103 |
+
if self.attn_config['attn_impl'] not in ['torch', 'flash', 'triton']:
|
104 |
+
raise ValueError(f"Unknown attn_impl={self.attn_config['attn_impl']}")
|
105 |
+
if self.attn_config['prefix_lm'] and self.attn_config['attn_impl'] not in ['torch', 'triton']:
|
106 |
+
raise NotImplementedError('prefix_lm only implemented with torch and triton attention.')
|
107 |
+
if self.attn_config['alibi'] and self.attn_config['attn_impl'] not in ['torch', 'triton']:
|
108 |
+
raise NotImplementedError('alibi only implemented with torch and triton attention.')
|
109 |
+
if self.attn_config['attn_uses_sequence_id'] and self.attn_config['attn_impl'] not in ['torch', 'triton']:
|
110 |
+
raise NotImplementedError('attn_uses_sequence_id only implemented with torch and triton attention.')
|
111 |
+
if self.embedding_fraction > 1 or self.embedding_fraction <= 0:
|
112 |
+
raise ValueError('model.embedding_fraction must be between 0 (exclusive) and 1 (inclusive)!')
|
113 |
+
if isinstance(self.logit_scale, str) and self.logit_scale != 'inv_sqrt_d_model':
|
114 |
+
raise ValueError(f"self.logit_scale={self.logit_scale!r} is not recognized as an option; use numeric value or 'inv_sqrt_d_model'.")
|
115 |
+
if self.init_config.get('name', None) is None:
|
116 |
+
raise ValueError(f"self.init_config={self.init_config!r} 'name' needs to be set.")
|
117 |
+
if not self.learned_pos_emb and (not self.attn_config['alibi']):
|
118 |
+
raise ValueError(f'Positional information must be provided to the model using either learned_pos_emb or alibi.')
|
llava/model/language_model/mpt/custom_embedding.py
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
from torch import Tensor
|
5 |
+
|
6 |
+
class SharedEmbedding(nn.Embedding):
|
7 |
+
|
8 |
+
def forward(self, input: Tensor, unembed: bool=False) -> Tensor:
|
9 |
+
if unembed:
|
10 |
+
return F.linear(input, self.weight)
|
11 |
+
return super().forward(input)
|
llava/model/language_model/mpt/flash_attn_triton.py
ADDED
@@ -0,0 +1,484 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Copied from https://github.com/HazyResearch/flash-attention/blob/eff9fe6b8076df59d64d7a3f464696738a3c7c24/flash_attn/flash_attn_triton.py
|
3 |
+
update imports to use 'triton_pre_mlir'
|
4 |
+
|
5 |
+
*Experimental* implementation of FlashAttention in Triton.
|
6 |
+
Tested with triton==2.0.0.dev20221202.
|
7 |
+
Triton 2.0 has a new backend (MLIR) but seems like it doesn't yet work for head dimensions
|
8 |
+
other than 64:
|
9 |
+
https://github.com/openai/triton/blob/d376020f90002757eea3ea9475d4f7cfc2ec5ead/python/triton/ops/flash_attention.py#L207
|
10 |
+
We'll update this implementation with the new Triton backend once this is fixed.
|
11 |
+
|
12 |
+
We use the FlashAttention implementation from Phil Tillet a starting point.
|
13 |
+
https://github.com/openai/triton/blob/master/python/tutorials/06-fused-attention.py
|
14 |
+
|
15 |
+
Changes:
|
16 |
+
- Implement both causal and non-causal attention.
|
17 |
+
- Implement both self-attention and cross-attention.
|
18 |
+
- Support arbitrary seqlens (not just multiples of 128), for both forward and backward.
|
19 |
+
- Support all head dimensions up to 128 (not just 16, 32, 64, 128), for both forward and backward.
|
20 |
+
- Support attention bias.
|
21 |
+
- Speed up the forward pass a bit, and only store the LSE instead of m and l.
|
22 |
+
- Make the backward for d=128 much faster by reducing register spilling.
|
23 |
+
- Optionally parallelize the backward pass across seqlen_k, to deal with the case of
|
24 |
+
small batch size * nheads.
|
25 |
+
|
26 |
+
Caution:
|
27 |
+
- This is an *experimental* implementation. The forward pass should be quite robust but
|
28 |
+
I'm not 100% sure that the backward pass doesn't have race conditions (due to the Triton compiler).
|
29 |
+
- This implementation has only been tested on A100.
|
30 |
+
- If you plan to use headdim other than 64 and 128, you should test for race conditions
|
31 |
+
(due to the Triton compiler), as done in tests/test_flash_attn.py
|
32 |
+
"test_flash_attn_triton_race_condition". I've tested and fixed many race conditions
|
33 |
+
for different head dimensions (40, 48, 64, 128, 80, 88, 96), but I'm still not 100% confident
|
34 |
+
that there are none left for other head dimensions.
|
35 |
+
|
36 |
+
Differences between this Triton version and the CUDA version:
|
37 |
+
- Triton version doesn't support dropout.
|
38 |
+
- Triton forward is generally faster than CUDA forward, while Triton backward is
|
39 |
+
generally slower than CUDA backward. Overall Triton forward + backward is slightly slower
|
40 |
+
than CUDA forward + backward.
|
41 |
+
- Triton version doesn't support different sequence lengths in a batch (i.e., RaggedTensor/NestedTensor).
|
42 |
+
- Triton version supports attention bias, while CUDA version doesn't.
|
43 |
+
"""
|
44 |
+
import math
|
45 |
+
import torch
|
46 |
+
import triton_pre_mlir as triton
|
47 |
+
import triton_pre_mlir.language as tl
|
48 |
+
|
49 |
+
@triton.heuristics({'EVEN_M': lambda args: args['seqlen_q'] % args['BLOCK_M'] == 0, 'EVEN_N': lambda args: args['seqlen_k'] % args['BLOCK_N'] == 0, 'EVEN_HEADDIM': lambda args: args['headdim'] == args['BLOCK_HEADDIM']})
|
50 |
+
@triton.jit
|
51 |
+
def _fwd_kernel(Q, K, V, Bias, Out, Lse, TMP, softmax_scale, stride_qb, stride_qh, stride_qm, stride_kb, stride_kh, stride_kn, stride_vb, stride_vh, stride_vn, stride_bb, stride_bh, stride_bm, stride_ob, stride_oh, stride_om, nheads, seqlen_q, seqlen_k, seqlen_q_rounded, headdim, CACHE_KEY_SEQLEN_Q, CACHE_KEY_SEQLEN_K, BIAS_TYPE: tl.constexpr, IS_CAUSAL: tl.constexpr, BLOCK_HEADDIM: tl.constexpr, EVEN_M: tl.constexpr, EVEN_N: tl.constexpr, EVEN_HEADDIM: tl.constexpr, BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr):
|
52 |
+
start_m = tl.program_id(0)
|
53 |
+
off_hb = tl.program_id(1)
|
54 |
+
off_b = off_hb // nheads
|
55 |
+
off_h = off_hb % nheads
|
56 |
+
offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
|
57 |
+
offs_n = tl.arange(0, BLOCK_N)
|
58 |
+
offs_d = tl.arange(0, BLOCK_HEADDIM)
|
59 |
+
q_ptrs = Q + off_b * stride_qb + off_h * stride_qh + (offs_m[:, None] * stride_qm + offs_d[None, :])
|
60 |
+
k_ptrs = K + off_b * stride_kb + off_h * stride_kh + (offs_n[:, None] * stride_kn + offs_d[None, :])
|
61 |
+
v_ptrs = V + off_b * stride_vb + off_h * stride_vh + (offs_n[:, None] * stride_vn + offs_d[None, :])
|
62 |
+
if BIAS_TYPE == 'vector':
|
63 |
+
b_ptrs = Bias + off_b * stride_bb + off_h * stride_bh + offs_n
|
64 |
+
elif BIAS_TYPE == 'matrix':
|
65 |
+
b_ptrs = Bias + off_b * stride_bb + off_h * stride_bh + (offs_m[:, None] * stride_bm + offs_n[None, :])
|
66 |
+
t_ptrs = TMP + off_hb * seqlen_q_rounded + offs_m
|
67 |
+
lse_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float('inf')
|
68 |
+
m_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float('inf')
|
69 |
+
acc_o = tl.zeros([BLOCK_M, BLOCK_HEADDIM], dtype=tl.float32)
|
70 |
+
if EVEN_M & EVEN_N:
|
71 |
+
if EVEN_HEADDIM:
|
72 |
+
q = tl.load(q_ptrs)
|
73 |
+
else:
|
74 |
+
q = tl.load(q_ptrs, mask=offs_d[None, :] < headdim, other=0.0)
|
75 |
+
elif EVEN_HEADDIM:
|
76 |
+
q = tl.load(q_ptrs, mask=offs_m[:, None] < seqlen_q, other=0.0)
|
77 |
+
else:
|
78 |
+
q = tl.load(q_ptrs, mask=(offs_m[:, None] < seqlen_q) & (offs_d[None, :] < headdim), other=0.0)
|
79 |
+
end_n = seqlen_k if not IS_CAUSAL else tl.minimum((start_m + 1) * BLOCK_M, seqlen_k)
|
80 |
+
for start_n in range(0, end_n, BLOCK_N):
|
81 |
+
start_n = tl.multiple_of(start_n, BLOCK_N)
|
82 |
+
if EVEN_N & EVEN_M:
|
83 |
+
if EVEN_HEADDIM:
|
84 |
+
k = tl.load(k_ptrs + start_n * stride_kn)
|
85 |
+
else:
|
86 |
+
k = tl.load(k_ptrs + start_n * stride_kn, mask=offs_d[None, :] < headdim, other=0.0)
|
87 |
+
elif EVEN_HEADDIM:
|
88 |
+
k = tl.load(k_ptrs + start_n * stride_kn, mask=(start_n + offs_n)[:, None] < seqlen_k, other=0.0)
|
89 |
+
else:
|
90 |
+
k = tl.load(k_ptrs + start_n * stride_kn, mask=((start_n + offs_n)[:, None] < seqlen_k) & (offs_d[None, :] < headdim), other=0.0)
|
91 |
+
qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32)
|
92 |
+
qk += tl.dot(q, k, trans_b=True)
|
93 |
+
if not EVEN_N:
|
94 |
+
qk += tl.where((start_n + offs_n)[None, :] < seqlen_k, 0, float('-inf'))
|
95 |
+
if IS_CAUSAL:
|
96 |
+
qk += tl.where(offs_m[:, None] >= (start_n + offs_n)[None, :], 0, float('-inf'))
|
97 |
+
if BIAS_TYPE != 'none':
|
98 |
+
if BIAS_TYPE == 'vector':
|
99 |
+
if EVEN_N:
|
100 |
+
bias = tl.load(b_ptrs + start_n).to(tl.float32)
|
101 |
+
else:
|
102 |
+
bias = tl.load(b_ptrs + start_n, mask=start_n + offs_n < seqlen_k, other=0.0).to(tl.float32)
|
103 |
+
bias = bias[None, :]
|
104 |
+
elif BIAS_TYPE == 'matrix':
|
105 |
+
if EVEN_M & EVEN_N:
|
106 |
+
bias = tl.load(b_ptrs + start_n).to(tl.float32)
|
107 |
+
else:
|
108 |
+
bias = tl.load(b_ptrs + start_n, mask=(offs_m[:, None] < seqlen_q) & ((start_n + offs_n)[None, :] < seqlen_k), other=0.0).to(tl.float32)
|
109 |
+
qk = qk * softmax_scale + bias
|
110 |
+
m_ij = tl.maximum(tl.max(qk, 1), lse_i)
|
111 |
+
p = tl.exp(qk - m_ij[:, None])
|
112 |
+
else:
|
113 |
+
m_ij = tl.maximum(tl.max(qk, 1) * softmax_scale, lse_i)
|
114 |
+
p = tl.exp(qk * softmax_scale - m_ij[:, None])
|
115 |
+
l_ij = tl.sum(p, 1)
|
116 |
+
acc_o_scale = tl.exp(m_i - m_ij)
|
117 |
+
tl.store(t_ptrs, acc_o_scale)
|
118 |
+
acc_o_scale = tl.load(t_ptrs)
|
119 |
+
acc_o = acc_o * acc_o_scale[:, None]
|
120 |
+
if EVEN_N & EVEN_M:
|
121 |
+
if EVEN_HEADDIM:
|
122 |
+
v = tl.load(v_ptrs + start_n * stride_vn)
|
123 |
+
else:
|
124 |
+
v = tl.load(v_ptrs + start_n * stride_vn, mask=offs_d[None, :] < headdim, other=0.0)
|
125 |
+
elif EVEN_HEADDIM:
|
126 |
+
v = tl.load(v_ptrs + start_n * stride_vn, mask=(start_n + offs_n)[:, None] < seqlen_k, other=0.0)
|
127 |
+
else:
|
128 |
+
v = tl.load(v_ptrs + start_n * stride_vn, mask=((start_n + offs_n)[:, None] < seqlen_k) & (offs_d[None, :] < headdim), other=0.0)
|
129 |
+
p = p.to(v.dtype)
|
130 |
+
acc_o += tl.dot(p, v)
|
131 |
+
m_i = m_ij
|
132 |
+
l_i_new = tl.exp(lse_i - m_ij) + l_ij
|
133 |
+
lse_i = m_ij + tl.log(l_i_new)
|
134 |
+
o_scale = tl.exp(m_i - lse_i)
|
135 |
+
tl.store(t_ptrs, o_scale)
|
136 |
+
o_scale = tl.load(t_ptrs)
|
137 |
+
acc_o = acc_o * o_scale[:, None]
|
138 |
+
start_m = tl.program_id(0)
|
139 |
+
offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
|
140 |
+
lse_ptrs = Lse + off_hb * seqlen_q_rounded + offs_m
|
141 |
+
tl.store(lse_ptrs, lse_i)
|
142 |
+
offs_d = tl.arange(0, BLOCK_HEADDIM)
|
143 |
+
out_ptrs = Out + off_b * stride_ob + off_h * stride_oh + (offs_m[:, None] * stride_om + offs_d[None, :])
|
144 |
+
if EVEN_M:
|
145 |
+
if EVEN_HEADDIM:
|
146 |
+
tl.store(out_ptrs, acc_o)
|
147 |
+
else:
|
148 |
+
tl.store(out_ptrs, acc_o, mask=offs_d[None, :] < headdim)
|
149 |
+
elif EVEN_HEADDIM:
|
150 |
+
tl.store(out_ptrs, acc_o, mask=offs_m[:, None] < seqlen_q)
|
151 |
+
else:
|
152 |
+
tl.store(out_ptrs, acc_o, mask=(offs_m[:, None] < seqlen_q) & (offs_d[None, :] < headdim))
|
153 |
+
|
154 |
+
@triton.jit
|
155 |
+
def _bwd_preprocess_do_o_dot(Out, DO, Delta, stride_ob, stride_oh, stride_om, stride_dob, stride_doh, stride_dom, nheads, seqlen_q, seqlen_q_rounded, headdim, BLOCK_M: tl.constexpr, BLOCK_HEADDIM: tl.constexpr):
|
156 |
+
start_m = tl.program_id(0)
|
157 |
+
off_hb = tl.program_id(1)
|
158 |
+
off_b = off_hb // nheads
|
159 |
+
off_h = off_hb % nheads
|
160 |
+
offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
|
161 |
+
offs_d = tl.arange(0, BLOCK_HEADDIM)
|
162 |
+
o = tl.load(Out + off_b * stride_ob + off_h * stride_oh + offs_m[:, None] * stride_om + offs_d[None, :], mask=(offs_m[:, None] < seqlen_q) & (offs_d[None, :] < headdim), other=0.0).to(tl.float32)
|
163 |
+
do = tl.load(DO + off_b * stride_dob + off_h * stride_doh + offs_m[:, None] * stride_dom + offs_d[None, :], mask=(offs_m[:, None] < seqlen_q) & (offs_d[None, :] < headdim), other=0.0).to(tl.float32)
|
164 |
+
delta = tl.sum(o * do, axis=1)
|
165 |
+
tl.store(Delta + off_hb * seqlen_q_rounded + offs_m, delta)
|
166 |
+
|
167 |
+
@triton.jit
|
168 |
+
def _bwd_store_dk_dv(dk_ptrs, dv_ptrs, dk, dv, offs_n, offs_d, seqlen_k, headdim, EVEN_M: tl.constexpr, EVEN_N: tl.constexpr, EVEN_HEADDIM: tl.constexpr):
|
169 |
+
if EVEN_N & EVEN_M:
|
170 |
+
if EVEN_HEADDIM:
|
171 |
+
tl.store(dv_ptrs, dv)
|
172 |
+
tl.store(dk_ptrs, dk)
|
173 |
+
else:
|
174 |
+
tl.store(dv_ptrs, dv, mask=offs_d[None, :] < headdim)
|
175 |
+
tl.store(dk_ptrs, dk, mask=offs_d[None, :] < headdim)
|
176 |
+
elif EVEN_HEADDIM:
|
177 |
+
tl.store(dv_ptrs, dv, mask=offs_n[:, None] < seqlen_k)
|
178 |
+
tl.store(dk_ptrs, dk, mask=offs_n[:, None] < seqlen_k)
|
179 |
+
else:
|
180 |
+
tl.store(dv_ptrs, dv, mask=(offs_n[:, None] < seqlen_k) & (offs_d[None, :] < headdim))
|
181 |
+
tl.store(dk_ptrs, dk, mask=(offs_n[:, None] < seqlen_k) & (offs_d[None, :] < headdim))
|
182 |
+
|
183 |
+
@triton.jit
|
184 |
+
def _bwd_kernel_one_col_block(start_n, Q, K, V, Bias, DO, DQ, DK, DV, LSE, D, softmax_scale, stride_qm, stride_kn, stride_vn, stride_bm, stride_dom, stride_dqm, stride_dkn, stride_dvn, seqlen_q, seqlen_k, headdim, ATOMIC_ADD: tl.constexpr, BIAS_TYPE: tl.constexpr, IS_CAUSAL: tl.constexpr, BLOCK_HEADDIM: tl.constexpr, EVEN_M: tl.constexpr, EVEN_N: tl.constexpr, EVEN_HEADDIM: tl.constexpr, BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr):
|
185 |
+
begin_m = 0 if not IS_CAUSAL else start_n * BLOCK_N // BLOCK_M * BLOCK_M
|
186 |
+
offs_qm = begin_m + tl.arange(0, BLOCK_M)
|
187 |
+
offs_n = start_n * BLOCK_N + tl.arange(0, BLOCK_N)
|
188 |
+
offs_m = tl.arange(0, BLOCK_M)
|
189 |
+
offs_d = tl.arange(0, BLOCK_HEADDIM)
|
190 |
+
q_ptrs = Q + (offs_qm[:, None] * stride_qm + offs_d[None, :])
|
191 |
+
k_ptrs = K + (offs_n[:, None] * stride_kn + offs_d[None, :])
|
192 |
+
v_ptrs = V + (offs_n[:, None] * stride_vn + offs_d[None, :])
|
193 |
+
do_ptrs = DO + (offs_qm[:, None] * stride_dom + offs_d[None, :])
|
194 |
+
dq_ptrs = DQ + (offs_qm[:, None] * stride_dqm + offs_d[None, :])
|
195 |
+
if BIAS_TYPE == 'vector':
|
196 |
+
b_ptrs = Bias + offs_n
|
197 |
+
elif BIAS_TYPE == 'matrix':
|
198 |
+
b_ptrs = Bias + (offs_qm[:, None] * stride_bm + offs_n[None, :])
|
199 |
+
dv = tl.zeros([BLOCK_N, BLOCK_HEADDIM], dtype=tl.float32)
|
200 |
+
dk = tl.zeros([BLOCK_N, BLOCK_HEADDIM], dtype=tl.float32)
|
201 |
+
if begin_m >= seqlen_q:
|
202 |
+
dv_ptrs = DV + (offs_n[:, None] * stride_dvn + offs_d[None, :])
|
203 |
+
dk_ptrs = DK + (offs_n[:, None] * stride_dkn + offs_d[None, :])
|
204 |
+
_bwd_store_dk_dv(dk_ptrs, dv_ptrs, dk, dv, offs_n, offs_d, seqlen_k, headdim, EVEN_M=EVEN_M, EVEN_N=EVEN_N, EVEN_HEADDIM=EVEN_HEADDIM)
|
205 |
+
return
|
206 |
+
if EVEN_N & EVEN_M:
|
207 |
+
if EVEN_HEADDIM:
|
208 |
+
k = tl.load(k_ptrs)
|
209 |
+
v = tl.load(v_ptrs)
|
210 |
+
else:
|
211 |
+
k = tl.load(k_ptrs, mask=offs_d[None, :] < headdim, other=0.0)
|
212 |
+
v = tl.load(v_ptrs, mask=offs_d[None, :] < headdim, other=0.0)
|
213 |
+
elif EVEN_HEADDIM:
|
214 |
+
k = tl.load(k_ptrs, mask=offs_n[:, None] < seqlen_k, other=0.0)
|
215 |
+
v = tl.load(v_ptrs, mask=offs_n[:, None] < seqlen_k, other=0.0)
|
216 |
+
else:
|
217 |
+
k = tl.load(k_ptrs, mask=(offs_n[:, None] < seqlen_k) & (offs_d[None, :] < headdim), other=0.0)
|
218 |
+
v = tl.load(v_ptrs, mask=(offs_n[:, None] < seqlen_k) & (offs_d[None, :] < headdim), other=0.0)
|
219 |
+
num_block_m = tl.cdiv(seqlen_q, BLOCK_M)
|
220 |
+
for start_m in range(begin_m, num_block_m * BLOCK_M, BLOCK_M):
|
221 |
+
start_m = tl.multiple_of(start_m, BLOCK_M)
|
222 |
+
offs_m_curr = start_m + offs_m
|
223 |
+
if EVEN_M & EVEN_HEADDIM:
|
224 |
+
q = tl.load(q_ptrs)
|
225 |
+
elif EVEN_HEADDIM:
|
226 |
+
q = tl.load(q_ptrs, mask=offs_m_curr[:, None] < seqlen_q, other=0.0)
|
227 |
+
else:
|
228 |
+
q = tl.load(q_ptrs, mask=(offs_m_curr[:, None] < seqlen_q) & (offs_d[None, :] < headdim), other=0.0)
|
229 |
+
qk = tl.dot(q, k, trans_b=True)
|
230 |
+
if not EVEN_N:
|
231 |
+
qk = tl.where(offs_n[None, :] < seqlen_k, qk, float('-inf'))
|
232 |
+
if IS_CAUSAL:
|
233 |
+
qk = tl.where(offs_m_curr[:, None] >= offs_n[None, :], qk, float('-inf'))
|
234 |
+
if BIAS_TYPE != 'none':
|
235 |
+
tl.debug_barrier()
|
236 |
+
if BIAS_TYPE == 'vector':
|
237 |
+
if EVEN_N:
|
238 |
+
bias = tl.load(b_ptrs).to(tl.float32)
|
239 |
+
else:
|
240 |
+
bias = tl.load(b_ptrs, mask=offs_n < seqlen_k, other=0.0).to(tl.float32)
|
241 |
+
bias = bias[None, :]
|
242 |
+
elif BIAS_TYPE == 'matrix':
|
243 |
+
if EVEN_M & EVEN_N:
|
244 |
+
bias = tl.load(b_ptrs).to(tl.float32)
|
245 |
+
else:
|
246 |
+
bias = tl.load(b_ptrs, mask=(offs_m_curr[:, None] < seqlen_q) & (offs_n[None, :] < seqlen_k), other=0.0).to(tl.float32)
|
247 |
+
qk = qk * softmax_scale + bias
|
248 |
+
if not EVEN_M & EVEN_HEADDIM:
|
249 |
+
tl.debug_barrier()
|
250 |
+
lse_i = tl.load(LSE + offs_m_curr)
|
251 |
+
if BIAS_TYPE == 'none':
|
252 |
+
p = tl.exp(qk * softmax_scale - lse_i[:, None])
|
253 |
+
else:
|
254 |
+
p = tl.exp(qk - lse_i[:, None])
|
255 |
+
if EVEN_M & EVEN_HEADDIM:
|
256 |
+
do = tl.load(do_ptrs)
|
257 |
+
else:
|
258 |
+
do = tl.load(do_ptrs, mask=(offs_m_curr[:, None] < seqlen_q) & (offs_d[None, :] < headdim), other=0.0)
|
259 |
+
dv += tl.dot(p.to(do.dtype), do, trans_a=True)
|
260 |
+
if not EVEN_M & EVEN_HEADDIM:
|
261 |
+
tl.debug_barrier()
|
262 |
+
dp = tl.dot(do, v, trans_b=True)
|
263 |
+
if not EVEN_HEADDIM:
|
264 |
+
tl.debug_barrier()
|
265 |
+
Di = tl.load(D + offs_m_curr)
|
266 |
+
ds = (p * (dp - Di[:, None]) * softmax_scale).to(q.dtype)
|
267 |
+
dk += tl.dot(ds, q, trans_a=True)
|
268 |
+
if not EVEN_M & EVEN_HEADDIM:
|
269 |
+
tl.debug_barrier()
|
270 |
+
if not ATOMIC_ADD:
|
271 |
+
if EVEN_M & EVEN_HEADDIM:
|
272 |
+
dq = tl.load(dq_ptrs, eviction_policy='evict_last')
|
273 |
+
dq += tl.dot(ds, k)
|
274 |
+
tl.store(dq_ptrs, dq, eviction_policy='evict_last')
|
275 |
+
elif EVEN_HEADDIM:
|
276 |
+
dq = tl.load(dq_ptrs, mask=offs_m_curr[:, None] < seqlen_q, other=0.0, eviction_policy='evict_last')
|
277 |
+
dq += tl.dot(ds, k)
|
278 |
+
tl.store(dq_ptrs, dq, mask=offs_m_curr[:, None] < seqlen_q, eviction_policy='evict_last')
|
279 |
+
else:
|
280 |
+
dq = tl.load(dq_ptrs, mask=(offs_m_curr[:, None] < seqlen_q) & (offs_d[None, :] < headdim), other=0.0, eviction_policy='evict_last')
|
281 |
+
dq += tl.dot(ds, k)
|
282 |
+
tl.store(dq_ptrs, dq, mask=(offs_m_curr[:, None] < seqlen_q) & (offs_d[None, :] < headdim), eviction_policy='evict_last')
|
283 |
+
else:
|
284 |
+
dq = tl.dot(ds, k)
|
285 |
+
if EVEN_M & EVEN_HEADDIM:
|
286 |
+
tl.atomic_add(dq_ptrs, dq)
|
287 |
+
elif EVEN_HEADDIM:
|
288 |
+
tl.atomic_add(dq_ptrs, dq, mask=offs_m_curr[:, None] < seqlen_q)
|
289 |
+
else:
|
290 |
+
tl.atomic_add(dq_ptrs, dq, mask=(offs_m_curr[:, None] < seqlen_q) & (offs_d[None, :] < headdim))
|
291 |
+
dq_ptrs += BLOCK_M * stride_dqm
|
292 |
+
q_ptrs += BLOCK_M * stride_qm
|
293 |
+
do_ptrs += BLOCK_M * stride_dom
|
294 |
+
if BIAS_TYPE == 'matrix':
|
295 |
+
b_ptrs += BLOCK_M * stride_bm
|
296 |
+
dv_ptrs = DV + (offs_n[:, None] * stride_dvn + offs_d[None, :])
|
297 |
+
dk_ptrs = DK + (offs_n[:, None] * stride_dkn + offs_d[None, :])
|
298 |
+
_bwd_store_dk_dv(dk_ptrs, dv_ptrs, dk, dv, offs_n, offs_d, seqlen_k, headdim, EVEN_M=EVEN_M, EVEN_N=EVEN_N, EVEN_HEADDIM=EVEN_HEADDIM)
|
299 |
+
|
300 |
+
def init_to_zero(name):
|
301 |
+
return lambda nargs: nargs[name].zero_()
|
302 |
+
|
303 |
+
@triton.autotune(configs=[triton.Config({'BLOCK_M': 128, 'BLOCK_N': 128, 'SEQUENCE_PARALLEL': False}, num_warps=8, num_stages=1, pre_hook=init_to_zero('DQ')), triton.Config({'BLOCK_M': 128, 'BLOCK_N': 128, 'SEQUENCE_PARALLEL': True}, num_warps=8, num_stages=1, pre_hook=init_to_zero('DQ'))], key=['CACHE_KEY_SEQLEN_Q', 'CACHE_KEY_SEQLEN_K', 'BIAS_TYPE', 'IS_CAUSAL', 'BLOCK_HEADDIM'])
|
304 |
+
@triton.heuristics({'EVEN_M': lambda args: args['seqlen_q'] % args['BLOCK_M'] == 0, 'EVEN_N': lambda args: args['seqlen_k'] % args['BLOCK_N'] == 0, 'EVEN_HEADDIM': lambda args: args['headdim'] == args['BLOCK_HEADDIM']})
|
305 |
+
@triton.jit
|
306 |
+
def _bwd_kernel(Q, K, V, Bias, DO, DQ, DK, DV, LSE, D, softmax_scale, stride_qb, stride_qh, stride_qm, stride_kb, stride_kh, stride_kn, stride_vb, stride_vh, stride_vn, stride_bb, stride_bh, stride_bm, stride_dob, stride_doh, stride_dom, stride_dqb, stride_dqh, stride_dqm, stride_dkb, stride_dkh, stride_dkn, stride_dvb, stride_dvh, stride_dvn, nheads, seqlen_q, seqlen_k, seqlen_q_rounded, headdim, CACHE_KEY_SEQLEN_Q, CACHE_KEY_SEQLEN_K, BIAS_TYPE: tl.constexpr, IS_CAUSAL: tl.constexpr, BLOCK_HEADDIM: tl.constexpr, SEQUENCE_PARALLEL: tl.constexpr, EVEN_M: tl.constexpr, EVEN_N: tl.constexpr, EVEN_HEADDIM: tl.constexpr, BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr):
|
307 |
+
off_hb = tl.program_id(1)
|
308 |
+
off_b = off_hb // nheads
|
309 |
+
off_h = off_hb % nheads
|
310 |
+
Q += off_b * stride_qb + off_h * stride_qh
|
311 |
+
K += off_b * stride_kb + off_h * stride_kh
|
312 |
+
V += off_b * stride_vb + off_h * stride_vh
|
313 |
+
DO += off_b * stride_dob + off_h * stride_doh
|
314 |
+
DQ += off_b * stride_dqb + off_h * stride_dqh
|
315 |
+
DK += off_b * stride_dkb + off_h * stride_dkh
|
316 |
+
DV += off_b * stride_dvb + off_h * stride_dvh
|
317 |
+
if BIAS_TYPE != 'none':
|
318 |
+
Bias += off_b * stride_bb + off_h * stride_bh
|
319 |
+
D += off_hb * seqlen_q_rounded
|
320 |
+
LSE += off_hb * seqlen_q_rounded
|
321 |
+
if not SEQUENCE_PARALLEL:
|
322 |
+
num_block_n = tl.cdiv(seqlen_k, BLOCK_N)
|
323 |
+
for start_n in range(0, num_block_n):
|
324 |
+
_bwd_kernel_one_col_block(start_n, Q, K, V, Bias, DO, DQ, DK, DV, LSE, D, softmax_scale, stride_qm, stride_kn, stride_vn, stride_bm, stride_dom, stride_dqm, stride_dkn, stride_dvn, seqlen_q, seqlen_k, headdim, ATOMIC_ADD=False, BIAS_TYPE=BIAS_TYPE, IS_CAUSAL=IS_CAUSAL, BLOCK_HEADDIM=BLOCK_HEADDIM, EVEN_M=EVEN_M, EVEN_N=EVEN_N, EVEN_HEADDIM=EVEN_HEADDIM, BLOCK_M=BLOCK_M, BLOCK_N=BLOCK_N)
|
325 |
+
else:
|
326 |
+
start_n = tl.program_id(0)
|
327 |
+
_bwd_kernel_one_col_block(start_n, Q, K, V, Bias, DO, DQ, DK, DV, LSE, D, softmax_scale, stride_qm, stride_kn, stride_vn, stride_bm, stride_dom, stride_dqm, stride_dkn, stride_dvn, seqlen_q, seqlen_k, headdim, ATOMIC_ADD=True, BIAS_TYPE=BIAS_TYPE, IS_CAUSAL=IS_CAUSAL, BLOCK_HEADDIM=BLOCK_HEADDIM, EVEN_M=EVEN_M, EVEN_N=EVEN_N, EVEN_HEADDIM=EVEN_HEADDIM, BLOCK_M=BLOCK_M, BLOCK_N=BLOCK_N)
|
328 |
+
|
329 |
+
def _flash_attn_forward(q, k, v, bias=None, causal=False, softmax_scale=None):
|
330 |
+
(batch, seqlen_q, nheads, d) = q.shape
|
331 |
+
(_, seqlen_k, _, _) = k.shape
|
332 |
+
assert k.shape == (batch, seqlen_k, nheads, d)
|
333 |
+
assert v.shape == (batch, seqlen_k, nheads, d)
|
334 |
+
assert d <= 128, 'FlashAttention only support head dimensions up to 128'
|
335 |
+
assert q.dtype == k.dtype == v.dtype, 'All tensors must have the same type'
|
336 |
+
assert q.dtype in [torch.float16, torch.bfloat16], 'Only support fp16 and bf16'
|
337 |
+
assert q.is_cuda and k.is_cuda and v.is_cuda
|
338 |
+
softmax_scale = softmax_scale or 1.0 / math.sqrt(d)
|
339 |
+
has_bias = bias is not None
|
340 |
+
bias_type = 'none'
|
341 |
+
if has_bias:
|
342 |
+
assert bias.dtype in [q.dtype, torch.float]
|
343 |
+
assert bias.is_cuda
|
344 |
+
assert bias.dim() == 4
|
345 |
+
if bias.stride(-1) != 1:
|
346 |
+
bias = bias.contiguous()
|
347 |
+
if bias.shape[2:] == (1, seqlen_k):
|
348 |
+
bias_type = 'vector'
|
349 |
+
elif bias.shape[2:] == (seqlen_q, seqlen_k):
|
350 |
+
bias_type = 'matrix'
|
351 |
+
else:
|
352 |
+
raise RuntimeError('Last 2 dimensions of bias must be (1, seqlen_k) or (seqlen_q, seqlen_k)')
|
353 |
+
bias = bias.expand(batch, nheads, seqlen_q, seqlen_k)
|
354 |
+
bias_strides = (bias.stride(0), bias.stride(1), bias.stride(2)) if has_bias else (0, 0, 0)
|
355 |
+
seqlen_q_rounded = math.ceil(seqlen_q / 128) * 128
|
356 |
+
lse = torch.empty((batch, nheads, seqlen_q_rounded), device=q.device, dtype=torch.float32)
|
357 |
+
tmp = torch.empty((batch, nheads, seqlen_q_rounded), device=q.device, dtype=torch.float32)
|
358 |
+
o = torch.empty_like(q)
|
359 |
+
BLOCK_HEADDIM = max(triton.next_power_of_2(d), 16)
|
360 |
+
BLOCK = 128
|
361 |
+
num_warps = 4 if d <= 64 else 8
|
362 |
+
grid = lambda META: (triton.cdiv(seqlen_q, META['BLOCK_M']), batch * nheads)
|
363 |
+
_fwd_kernel[grid](q, k, v, bias, o, lse, tmp, softmax_scale, q.stride(0), q.stride(2), q.stride(1), k.stride(0), k.stride(2), k.stride(1), v.stride(0), v.stride(2), v.stride(1), *bias_strides, o.stride(0), o.stride(2), o.stride(1), nheads, seqlen_q, seqlen_k, seqlen_q_rounded, d, seqlen_q // 32, seqlen_k // 32, bias_type, causal, BLOCK_HEADDIM, BLOCK_M=BLOCK, BLOCK_N=BLOCK, num_warps=num_warps, num_stages=1)
|
364 |
+
return (o, lse, softmax_scale)
|
365 |
+
|
366 |
+
def _flash_attn_backward(do, q, k, v, o, lse, dq, dk, dv, bias=None, causal=False, softmax_scale=None):
|
367 |
+
if do.stride(-1) != 1:
|
368 |
+
do = do.contiguous()
|
369 |
+
(batch, seqlen_q, nheads, d) = q.shape
|
370 |
+
(_, seqlen_k, _, _) = k.shape
|
371 |
+
assert d <= 128
|
372 |
+
seqlen_q_rounded = math.ceil(seqlen_q / 128) * 128
|
373 |
+
assert lse.shape == (batch, nheads, seqlen_q_rounded)
|
374 |
+
assert q.stride(-1) == k.stride(-1) == v.stride(-1) == o.stride(-1) == 1
|
375 |
+
assert dq.stride(-1) == dk.stride(-1) == dv.stride(-1) == 1
|
376 |
+
softmax_scale = softmax_scale or 1.0 / math.sqrt(d)
|
377 |
+
dq_accum = torch.empty_like(q, dtype=torch.float32)
|
378 |
+
delta = torch.empty_like(lse)
|
379 |
+
BLOCK_HEADDIM = max(triton.next_power_of_2(d), 16)
|
380 |
+
grid = lambda META: (triton.cdiv(seqlen_q, META['BLOCK_M']), batch * nheads)
|
381 |
+
_bwd_preprocess_do_o_dot[grid](o, do, delta, o.stride(0), o.stride(2), o.stride(1), do.stride(0), do.stride(2), do.stride(1), nheads, seqlen_q, seqlen_q_rounded, d, BLOCK_M=128, BLOCK_HEADDIM=BLOCK_HEADDIM)
|
382 |
+
has_bias = bias is not None
|
383 |
+
bias_type = 'none'
|
384 |
+
if has_bias:
|
385 |
+
assert bias.dtype in [q.dtype, torch.float]
|
386 |
+
assert bias.is_cuda
|
387 |
+
assert bias.dim() == 4
|
388 |
+
assert bias.stride(-1) == 1
|
389 |
+
if bias.shape[2:] == (1, seqlen_k):
|
390 |
+
bias_type = 'vector'
|
391 |
+
elif bias.shape[2:] == (seqlen_q, seqlen_k):
|
392 |
+
bias_type = 'matrix'
|
393 |
+
else:
|
394 |
+
raise RuntimeError('Last 2 dimensions of bias must be (1, seqlen_k) or (seqlen_q, seqlen_k)')
|
395 |
+
bias = bias.expand(batch, nheads, seqlen_q, seqlen_k)
|
396 |
+
bias_strides = (bias.stride(0), bias.stride(1), bias.stride(2)) if has_bias else (0, 0, 0)
|
397 |
+
grid = lambda META: (triton.cdiv(seqlen_k, META['BLOCK_N']) if META['SEQUENCE_PARALLEL'] else 1, batch * nheads)
|
398 |
+
_bwd_kernel[grid](q, k, v, bias, do, dq_accum, dk, dv, lse, delta, softmax_scale, q.stride(0), q.stride(2), q.stride(1), k.stride(0), k.stride(2), k.stride(1), v.stride(0), v.stride(2), v.stride(1), *bias_strides, do.stride(0), do.stride(2), do.stride(1), dq_accum.stride(0), dq_accum.stride(2), dq_accum.stride(1), dk.stride(0), dk.stride(2), dk.stride(1), dv.stride(0), dv.stride(2), dv.stride(1), nheads, seqlen_q, seqlen_k, seqlen_q_rounded, d, seqlen_q // 32, seqlen_k // 32, bias_type, causal, BLOCK_HEADDIM)
|
399 |
+
dq.copy_(dq_accum)
|
400 |
+
|
401 |
+
class FlashAttnQKVPackedFunc(torch.autograd.Function):
|
402 |
+
|
403 |
+
@staticmethod
|
404 |
+
def forward(ctx, qkv, bias=None, causal=False, softmax_scale=None):
|
405 |
+
"""
|
406 |
+
qkv: (batch, seqlen, 3, nheads, headdim)
|
407 |
+
bias: optional, shape broadcastible to (batch, nheads, seqlen, seqlen).
|
408 |
+
For example, ALiBi mask for causal would have shape (1, nheads, 1, seqlen).
|
409 |
+
ALiBi mask for non-causal would have shape (1, nheads, seqlen, seqlen)
|
410 |
+
"""
|
411 |
+
if qkv.stride(-1) != 1:
|
412 |
+
qkv = qkv.contiguous()
|
413 |
+
(o, lse, ctx.softmax_scale) = _flash_attn_forward(qkv[:, :, 0], qkv[:, :, 1], qkv[:, :, 2], bias=bias, causal=causal, softmax_scale=softmax_scale)
|
414 |
+
ctx.save_for_backward(qkv, o, lse, bias)
|
415 |
+
ctx.causal = causal
|
416 |
+
return o
|
417 |
+
|
418 |
+
@staticmethod
|
419 |
+
def backward(ctx, do):
|
420 |
+
(qkv, o, lse, bias) = ctx.saved_tensors
|
421 |
+
assert not ctx.needs_input_grad[1], 'FlashAttention does not support bias gradient yet'
|
422 |
+
with torch.inference_mode():
|
423 |
+
dqkv = torch.empty_like(qkv)
|
424 |
+
_flash_attn_backward(do, qkv[:, :, 0], qkv[:, :, 1], qkv[:, :, 2], o, lse, dqkv[:, :, 0], dqkv[:, :, 1], dqkv[:, :, 2], bias=bias, causal=ctx.causal, softmax_scale=ctx.softmax_scale)
|
425 |
+
return (dqkv, None, None, None)
|
426 |
+
flash_attn_qkvpacked_func = FlashAttnQKVPackedFunc.apply
|
427 |
+
|
428 |
+
class FlashAttnKVPackedFunc(torch.autograd.Function):
|
429 |
+
|
430 |
+
@staticmethod
|
431 |
+
def forward(ctx, q, kv, bias=None, causal=False, softmax_scale=None):
|
432 |
+
"""
|
433 |
+
q: (batch, seqlen_q, nheads, headdim)
|
434 |
+
kv: (batch, seqlen_k, 2, nheads, headdim)
|
435 |
+
bias: optional, shape broadcastible to (batch, nheads, seqlen_q, seqlen_k).
|
436 |
+
For example, ALiBi mask for causal would have shape (1, nheads, 1, seqlen_k).
|
437 |
+
ALiBi mask for non-causal would have shape (1, nheads, seqlen_q, seqlen_k)
|
438 |
+
"""
|
439 |
+
(q, kv) = [x if x.stride(-1) == 1 else x.contiguous() for x in [q, kv]]
|
440 |
+
(o, lse, ctx.softmax_scale) = _flash_attn_forward(q, kv[:, :, 0], kv[:, :, 1], bias=bias, causal=causal, softmax_scale=softmax_scale)
|
441 |
+
ctx.save_for_backward(q, kv, o, lse, bias)
|
442 |
+
ctx.causal = causal
|
443 |
+
return o
|
444 |
+
|
445 |
+
@staticmethod
|
446 |
+
def backward(ctx, do):
|
447 |
+
(q, kv, o, lse, bias) = ctx.saved_tensors
|
448 |
+
if len(ctx.needs_input_grad) >= 3:
|
449 |
+
assert not ctx.needs_input_grad[2], 'FlashAttention does not support bias gradient yet'
|
450 |
+
with torch.inference_mode():
|
451 |
+
dq = torch.empty_like(q)
|
452 |
+
dkv = torch.empty_like(kv)
|
453 |
+
_flash_attn_backward(do, q, kv[:, :, 0], kv[:, :, 1], o, lse, dq, dkv[:, :, 0], dkv[:, :, 1], bias=bias, causal=ctx.causal, softmax_scale=ctx.softmax_scale)
|
454 |
+
return (dq, dkv, None, None, None)
|
455 |
+
flash_attn_kvpacked_func = FlashAttnKVPackedFunc.apply
|
456 |
+
|
457 |
+
class FlashAttnFunc(torch.autograd.Function):
|
458 |
+
|
459 |
+
@staticmethod
|
460 |
+
def forward(ctx, q, k, v, bias=None, causal=False, softmax_scale=None):
|
461 |
+
"""
|
462 |
+
q: (batch_size, seqlen_q, nheads, headdim)
|
463 |
+
k, v: (batch_size, seqlen_k, nheads, headdim)
|
464 |
+
bias: optional, shape broadcastible to (batch, nheads, seqlen_q, seqlen_k).
|
465 |
+
For example, ALiBi mask for causal would have shape (1, nheads, 1, seqlen_k).
|
466 |
+
ALiBi mask for non-causal would have shape (1, nheads, seqlen_q, seqlen_k)
|
467 |
+
"""
|
468 |
+
(q, k, v) = [x if x.stride(-1) == 1 else x.contiguous() for x in [q, k, v]]
|
469 |
+
(o, lse, ctx.softmax_scale) = _flash_attn_forward(q, k, v, bias=bias, causal=causal, softmax_scale=softmax_scale)
|
470 |
+
ctx.save_for_backward(q, k, v, o, lse, bias)
|
471 |
+
ctx.causal = causal
|
472 |
+
return o
|
473 |
+
|
474 |
+
@staticmethod
|
475 |
+
def backward(ctx, do):
|
476 |
+
(q, k, v, o, lse, bias) = ctx.saved_tensors
|
477 |
+
assert not ctx.needs_input_grad[3], 'FlashAttention does not support bias gradient yet'
|
478 |
+
with torch.inference_mode():
|
479 |
+
dq = torch.empty_like(q)
|
480 |
+
dk = torch.empty_like(k)
|
481 |
+
dv = torch.empty_like(v)
|
482 |
+
_flash_attn_backward(do, q, k, v, o, lse, dq, dk, dv, bias=bias, causal=ctx.causal, softmax_scale=ctx.softmax_scale)
|
483 |
+
return (dq, dk, dv, None, None, None)
|
484 |
+
flash_attn_func = FlashAttnFunc.apply
|
llava/model/language_model/mpt/hf_prefixlm_converter.py
ADDED
@@ -0,0 +1,415 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Converts Huggingface Causal LM to Prefix LM.
|
2 |
+
|
3 |
+
Conversion does lightweight surgery on a HuggingFace
|
4 |
+
Causal LM to convert it to a Prefix LM.
|
5 |
+
|
6 |
+
Prefix LMs accepts a `bidirectional_mask` input in `forward`
|
7 |
+
and treat the input prompt as the prefix in `generate`.
|
8 |
+
"""
|
9 |
+
import math
|
10 |
+
import warnings
|
11 |
+
from types import MethodType
|
12 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
13 |
+
import torch
|
14 |
+
from transformers.models.bloom.modeling_bloom import BaseModelOutputWithPastAndCrossAttentions, BloomForCausalLM, BloomModel, CausalLMOutputWithCrossAttentions, CrossEntropyLoss
|
15 |
+
from transformers.models.bloom.modeling_bloom import _expand_mask as _expand_mask_bloom
|
16 |
+
from transformers.models.bloom.modeling_bloom import _make_causal_mask as _make_causal_mask_bloom
|
17 |
+
from transformers.models.bloom.modeling_bloom import logging
|
18 |
+
from transformers.models.gpt2.modeling_gpt2 import GPT2LMHeadModel
|
19 |
+
from transformers.models.gpt_neo.modeling_gpt_neo import GPTNeoForCausalLM
|
20 |
+
from transformers.models.gpt_neox.modeling_gpt_neox import GPTNeoXForCausalLM
|
21 |
+
from transformers.models.gptj.modeling_gptj import GPTJForCausalLM
|
22 |
+
from transformers.models.opt.modeling_opt import OPTForCausalLM
|
23 |
+
from transformers.models.opt.modeling_opt import _expand_mask as _expand_mask_opt
|
24 |
+
from transformers.models.opt.modeling_opt import _make_causal_mask as _make_causal_mask_opt
|
25 |
+
logger = logging.get_logger(__name__)
|
26 |
+
_SUPPORTED_GPT_MODELS = (GPT2LMHeadModel, GPTJForCausalLM, GPTNeoForCausalLM, GPTNeoXForCausalLM)
|
27 |
+
CAUSAL_GPT_TYPES = Union[GPT2LMHeadModel, GPTJForCausalLM, GPTNeoForCausalLM, GPTNeoXForCausalLM]
|
28 |
+
|
29 |
+
def _convert_gpt_causal_lm_to_prefix_lm(model: CAUSAL_GPT_TYPES) -> CAUSAL_GPT_TYPES:
|
30 |
+
"""Converts a GPT-style Causal LM to a Prefix LM.
|
31 |
+
|
32 |
+
Supported HuggingFace model classes:
|
33 |
+
- `GPT2LMHeadModel`
|
34 |
+
- `GPTNeoForCausalLM`
|
35 |
+
- `GPTNeoXForCausalLM`
|
36 |
+
- `GPTJForCausalLM`
|
37 |
+
|
38 |
+
See `convert_hf_causal_lm_to_prefix_lm` for more details.
|
39 |
+
"""
|
40 |
+
if hasattr(model, '_prefix_lm_converted'):
|
41 |
+
return model
|
42 |
+
assert isinstance(model, _SUPPORTED_GPT_MODELS)
|
43 |
+
assert model.config.add_cross_attention == False, 'Only supports GPT-style decoder-only models'
|
44 |
+
|
45 |
+
def _get_attn_modules(model: CAUSAL_GPT_TYPES) -> List[torch.nn.Module]:
|
46 |
+
"""Helper that gets a list of the model's attention modules.
|
47 |
+
|
48 |
+
Each module has a `bias` buffer used for causal masking. The Prefix LM
|
49 |
+
conversion adds logic to dynamically manipulate these biases to support
|
50 |
+
Prefix LM attention masking.
|
51 |
+
"""
|
52 |
+
attn_modules = []
|
53 |
+
if isinstance(model, GPTNeoXForCausalLM):
|
54 |
+
blocks = model.gpt_neox.layers
|
55 |
+
else:
|
56 |
+
blocks = model.transformer.h
|
57 |
+
for block in blocks:
|
58 |
+
if isinstance(model, GPTNeoForCausalLM):
|
59 |
+
if block.attn.attention_type != 'global':
|
60 |
+
continue
|
61 |
+
attn_module = block.attn.attention
|
62 |
+
elif isinstance(model, GPTNeoXForCausalLM):
|
63 |
+
attn_module = block.attention
|
64 |
+
else:
|
65 |
+
attn_module = block.attn
|
66 |
+
attn_modules.append(attn_module)
|
67 |
+
return attn_modules
|
68 |
+
setattr(model, '_original_forward', getattr(model, 'forward'))
|
69 |
+
setattr(model, '_original_generate', getattr(model, 'generate'))
|
70 |
+
|
71 |
+
def forward(self: CAUSAL_GPT_TYPES, input_ids: Optional[torch.LongTensor]=None, past_key_values: Optional[Tuple[Tuple[torch.Tensor]]]=None, attention_mask: Optional[torch.FloatTensor]=None, bidirectional_mask: Optional[torch.Tensor]=None, token_type_ids: Optional[torch.LongTensor]=None, position_ids: Optional[torch.LongTensor]=None, head_mask: Optional[torch.FloatTensor]=None, inputs_embeds: Optional[torch.FloatTensor]=None, labels: Optional[torch.LongTensor]=None, use_cache: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, return_dict: Optional[bool]=None):
|
72 |
+
"""Wraps original forward to enable PrefixLM attention."""
|
73 |
+
|
74 |
+
def call_og_forward():
|
75 |
+
if isinstance(self, GPTNeoXForCausalLM):
|
76 |
+
return self._original_forward(input_ids=input_ids, past_key_values=past_key_values, attention_mask=attention_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, labels=labels, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict)
|
77 |
+
else:
|
78 |
+
return self._original_forward(input_ids=input_ids, past_key_values=past_key_values, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, labels=labels, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict)
|
79 |
+
if bidirectional_mask is None:
|
80 |
+
return call_og_forward()
|
81 |
+
assert isinstance(bidirectional_mask, torch.Tensor)
|
82 |
+
attn_modules = _get_attn_modules(model)
|
83 |
+
(b, s) = bidirectional_mask.shape
|
84 |
+
max_length = attn_modules[0].bias.shape[-1]
|
85 |
+
if s > max_length:
|
86 |
+
raise ValueError(f'bidirectional_mask sequence length (={s}) exceeds the ' + f'max length allowed by the model ({max_length}).')
|
87 |
+
assert s <= max_length
|
88 |
+
if s < max_length:
|
89 |
+
pad = torch.zeros((int(b), int(max_length - s)), dtype=bidirectional_mask.dtype, device=bidirectional_mask.device)
|
90 |
+
bidirectional_mask = torch.cat([bidirectional_mask, pad], dim=1)
|
91 |
+
bidirectional = bidirectional_mask.unsqueeze(1).unsqueeze(1)
|
92 |
+
for attn_module in attn_modules:
|
93 |
+
attn_module.bias.data = torch.logical_or(attn_module.bias.data, bidirectional)
|
94 |
+
output = call_og_forward()
|
95 |
+
for attn_module in attn_modules:
|
96 |
+
attn_module.bias.data = torch.tril(attn_module.bias.data[0, 0])[None, None]
|
97 |
+
return output
|
98 |
+
|
99 |
+
def generate(self: CAUSAL_GPT_TYPES, *args: tuple, **kwargs: Dict[str, Any]):
|
100 |
+
"""Wraps original generate to enable PrefixLM attention."""
|
101 |
+
attn_modules = _get_attn_modules(model)
|
102 |
+
for attn_module in attn_modules:
|
103 |
+
attn_module.bias.data[:] = 1
|
104 |
+
output = self._original_generate(*args, **kwargs)
|
105 |
+
for attn_module in attn_modules:
|
106 |
+
attn_module.bias.data = torch.tril(attn_module.bias.data[0, 0])[None, None]
|
107 |
+
return output
|
108 |
+
setattr(model, 'forward', MethodType(forward, model))
|
109 |
+
setattr(model, 'generate', MethodType(generate, model))
|
110 |
+
setattr(model, '_prefix_lm_converted', True)
|
111 |
+
return model
|
112 |
+
|
113 |
+
def _convert_bloom_causal_lm_to_prefix_lm(model: BloomForCausalLM) -> BloomForCausalLM:
|
114 |
+
"""Converts a BLOOM Causal LM to a Prefix LM.
|
115 |
+
|
116 |
+
Supported HuggingFace model classes:
|
117 |
+
- `BloomForCausalLM`
|
118 |
+
|
119 |
+
See `convert_hf_causal_lm_to_prefix_lm` for more details.
|
120 |
+
"""
|
121 |
+
if hasattr(model, '_prefix_lm_converted'):
|
122 |
+
return model
|
123 |
+
assert isinstance(model, BloomForCausalLM)
|
124 |
+
assert model.config.add_cross_attention == False, 'Only supports BLOOM decoder-only models'
|
125 |
+
|
126 |
+
def _prepare_attn_mask(self: BloomModel, attention_mask: torch.Tensor, bidirectional_mask: Optional[torch.Tensor], input_shape: Tuple[int, int], past_key_values_length: int) -> torch.BoolTensor:
|
127 |
+
combined_attention_mask = None
|
128 |
+
device = attention_mask.device
|
129 |
+
(_, src_length) = input_shape
|
130 |
+
if src_length > 1:
|
131 |
+
combined_attention_mask = _make_causal_mask_bloom(input_shape, device=device, past_key_values_length=past_key_values_length)
|
132 |
+
if bidirectional_mask is not None:
|
133 |
+
assert attention_mask.shape == bidirectional_mask.shape
|
134 |
+
expanded_bidirectional_mask = _expand_mask_bloom(bidirectional_mask, tgt_length=src_length)
|
135 |
+
combined_attention_mask = torch.logical_and(combined_attention_mask, expanded_bidirectional_mask)
|
136 |
+
expanded_attn_mask = _expand_mask_bloom(attention_mask, tgt_length=src_length)
|
137 |
+
combined_attention_mask = expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask | combined_attention_mask
|
138 |
+
return combined_attention_mask
|
139 |
+
|
140 |
+
def _build_alibi_tensor(self: BloomModel, batch_size: int, query_length: int, key_length: int, dtype: torch.dtype, device: torch.device) -> torch.Tensor:
|
141 |
+
num_heads = self.config.n_head
|
142 |
+
closest_power_of_2 = 2 ** math.floor(math.log2(num_heads))
|
143 |
+
base = torch.tensor(2 ** (-2 ** (-(math.log2(closest_power_of_2) - 3))), device=device, dtype=torch.float32)
|
144 |
+
powers = torch.arange(1, 1 + closest_power_of_2, device=device, dtype=torch.int32)
|
145 |
+
slopes = torch.pow(base, powers)
|
146 |
+
if closest_power_of_2 != num_heads:
|
147 |
+
extra_base = torch.tensor(2 ** (-2 ** (-(math.log2(2 * closest_power_of_2) - 3))), device=device, dtype=torch.float32)
|
148 |
+
num_remaining_heads = min(closest_power_of_2, num_heads - closest_power_of_2)
|
149 |
+
extra_powers = torch.arange(1, 1 + 2 * num_remaining_heads, 2, device=device, dtype=torch.int32)
|
150 |
+
slopes = torch.cat([slopes, torch.pow(extra_base, extra_powers)], dim=0)
|
151 |
+
qa = torch.arange(query_length, device=device, dtype=torch.int32).view(-1, 1)
|
152 |
+
ka = torch.arange(key_length, device=device, dtype=torch.int32).view(1, -1)
|
153 |
+
diffs = qa - ka + key_length - query_length
|
154 |
+
diffs = -diffs.abs()
|
155 |
+
alibi = slopes.view(1, num_heads, 1, 1) * diffs.view(1, 1, query_length, key_length)
|
156 |
+
alibi = alibi.expand(batch_size, -1, -1, -1).reshape(-1, query_length, key_length)
|
157 |
+
return alibi.to(dtype)
|
158 |
+
KeyValueT = Tuple[torch.Tensor, torch.Tensor]
|
159 |
+
|
160 |
+
def forward(self: BloomModel, input_ids: Optional[torch.LongTensor]=None, past_key_values: Optional[Tuple[KeyValueT, ...]]=None, attention_mask: Optional[torch.Tensor]=None, bidirectional_mask: Optional[torch.Tensor]=None, head_mask: Optional[torch.LongTensor]=None, inputs_embeds: Optional[torch.LongTensor]=None, use_cache: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, return_dict: Optional[bool]=None, **deprecated_arguments) -> Union[Tuple[torch.Tensor, ...], BaseModelOutputWithPastAndCrossAttentions]:
|
161 |
+
if deprecated_arguments.pop('position_ids', False) is not False:
|
162 |
+
warnings.warn('`position_ids` have no functionality in BLOOM and will be removed in v5.0.0. ' + 'You can safely ignore passing `position_ids`.', FutureWarning)
|
163 |
+
if len(deprecated_arguments) > 0:
|
164 |
+
raise ValueError(f'Got unexpected arguments: {deprecated_arguments}')
|
165 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
166 |
+
output_hidden_states = output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
167 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
168 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
169 |
+
if input_ids is not None and inputs_embeds is not None:
|
170 |
+
raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time')
|
171 |
+
elif input_ids is not None:
|
172 |
+
(batch_size, seq_length) = input_ids.shape
|
173 |
+
elif inputs_embeds is not None:
|
174 |
+
(batch_size, seq_length, _) = inputs_embeds.shape
|
175 |
+
else:
|
176 |
+
raise ValueError('You have to specify either input_ids or inputs_embeds')
|
177 |
+
if past_key_values is None:
|
178 |
+
past_key_values = tuple([None] * len(self.h))
|
179 |
+
head_mask = self.get_head_mask(head_mask, self.config.n_layer)
|
180 |
+
if inputs_embeds is None:
|
181 |
+
inputs_embeds = self.word_embeddings(input_ids)
|
182 |
+
hidden_states = self.word_embeddings_layernorm(inputs_embeds)
|
183 |
+
presents = () if use_cache else None
|
184 |
+
all_self_attentions = () if output_attentions else None
|
185 |
+
all_hidden_states = () if output_hidden_states else None
|
186 |
+
seq_length_with_past = seq_length
|
187 |
+
past_key_values_length = 0
|
188 |
+
if past_key_values[0] is not None:
|
189 |
+
tmp = past_key_values[0][0]
|
190 |
+
past_key_values_length = tmp.shape[2]
|
191 |
+
seq_length_with_past = seq_length_with_past + past_key_values_length
|
192 |
+
if attention_mask is None:
|
193 |
+
attention_mask = torch.ones((batch_size, seq_length_with_past), device=hidden_states.device)
|
194 |
+
else:
|
195 |
+
attention_mask = attention_mask.to(hidden_states.device)
|
196 |
+
alibi = self._build_alibi_tensor(batch_size=batch_size, query_length=seq_length, key_length=seq_length_with_past, dtype=hidden_states.dtype, device=hidden_states.device)
|
197 |
+
causal_mask = self._prepare_attn_mask(attention_mask, bidirectional_mask, input_shape=(batch_size, seq_length), past_key_values_length=past_key_values_length)
|
198 |
+
for (i, (block, layer_past)) in enumerate(zip(self.h, past_key_values)):
|
199 |
+
if output_hidden_states:
|
200 |
+
hst = (hidden_states,)
|
201 |
+
all_hidden_states = all_hidden_states + hst
|
202 |
+
if self.gradient_checkpointing and self.training:
|
203 |
+
if use_cache:
|
204 |
+
logger.warning('`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`...')
|
205 |
+
use_cache = False
|
206 |
+
|
207 |
+
def create_custom_forward(module):
|
208 |
+
|
209 |
+
def custom_forward(*inputs):
|
210 |
+
return module(*inputs, use_cache=use_cache, output_attentions=output_attentions)
|
211 |
+
return custom_forward
|
212 |
+
outputs = torch.utils.checkpoint.checkpoint(create_custom_forward(block), hidden_states, alibi, causal_mask, head_mask[i])
|
213 |
+
else:
|
214 |
+
outputs = block(hidden_states, layer_past=layer_past, attention_mask=causal_mask, head_mask=head_mask[i], use_cache=use_cache, output_attentions=output_attentions, alibi=alibi)
|
215 |
+
hidden_states = outputs[0]
|
216 |
+
if use_cache is True:
|
217 |
+
presents = presents + (outputs[1],)
|
218 |
+
if output_attentions:
|
219 |
+
oa = (outputs[2 if use_cache else 1],)
|
220 |
+
all_self_attentions = all_self_attentions + oa
|
221 |
+
hidden_states = self.ln_f(hidden_states)
|
222 |
+
if output_hidden_states:
|
223 |
+
hst = (hidden_states,)
|
224 |
+
all_hidden_states = all_hidden_states + hst
|
225 |
+
if not return_dict:
|
226 |
+
return tuple((v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None))
|
227 |
+
return BaseModelOutputWithPastAndCrossAttentions(last_hidden_state=hidden_states, past_key_values=presents, hidden_states=all_hidden_states, attentions=all_self_attentions)
|
228 |
+
setattr(model.transformer, '_prepare_attn_mask', MethodType(_prepare_attn_mask, model.transformer))
|
229 |
+
setattr(model.transformer, '_build_alibi_tensor', MethodType(_build_alibi_tensor, model.transformer))
|
230 |
+
setattr(model.transformer, 'forward', MethodType(forward, model.transformer))
|
231 |
+
KeyValueT = Tuple[torch.Tensor, torch.Tensor]
|
232 |
+
|
233 |
+
def forward(self: BloomForCausalLM, input_ids: Optional[torch.LongTensor]=None, past_key_values: Optional[Tuple[KeyValueT, ...]]=None, attention_mask: Optional[torch.Tensor]=None, bidirectional_mask: Optional[torch.Tensor]=None, head_mask: Optional[torch.Tensor]=None, inputs_embeds: Optional[torch.Tensor]=None, labels: Optional[torch.Tensor]=None, use_cache: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, return_dict: Optional[bool]=None, **deprecated_arguments) -> Union[Tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]:
|
234 |
+
"""Replacement forward method for BloomCausalLM."""
|
235 |
+
if deprecated_arguments.pop('position_ids', False) is not False:
|
236 |
+
warnings.warn('`position_ids` have no functionality in BLOOM and will be removed ' + 'in v5.0.0. You can safely ignore passing `position_ids`.', FutureWarning)
|
237 |
+
if len(deprecated_arguments) > 0:
|
238 |
+
raise ValueError(f'Got unexpected arguments: {deprecated_arguments}')
|
239 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
240 |
+
transformer_outputs = self.transformer(input_ids, past_key_values=past_key_values, attention_mask=attention_mask, bidirectional_mask=bidirectional_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict)
|
241 |
+
hidden_states = transformer_outputs[0]
|
242 |
+
lm_logits = self.lm_head(hidden_states)
|
243 |
+
loss = None
|
244 |
+
if labels is not None:
|
245 |
+
shift_logits = lm_logits[..., :-1, :].contiguous()
|
246 |
+
shift_labels = labels[..., 1:].contiguous()
|
247 |
+
(batch_size, seq_length, vocab_size) = shift_logits.shape
|
248 |
+
loss_fct = CrossEntropyLoss()
|
249 |
+
loss = loss_fct(shift_logits.view(batch_size * seq_length, vocab_size), shift_labels.view(batch_size * seq_length))
|
250 |
+
if not return_dict:
|
251 |
+
output = (lm_logits,) + transformer_outputs[1:]
|
252 |
+
return (loss,) + output if loss is not None else output
|
253 |
+
return CausalLMOutputWithCrossAttentions(loss=loss, logits=lm_logits, past_key_values=transformer_outputs.past_key_values, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions)
|
254 |
+
|
255 |
+
def prepare_inputs_for_generation(self: BloomForCausalLM, input_ids: torch.LongTensor, past: Optional[torch.Tensor]=None, attention_mask: Optional[torch.Tensor]=None, **kwargs) -> dict:
|
256 |
+
if past:
|
257 |
+
input_ids = input_ids[:, -1].unsqueeze(-1)
|
258 |
+
bidirectional_mask = None
|
259 |
+
if past[0][0].shape[0] == input_ids.shape[0]:
|
260 |
+
past = self._convert_to_bloom_cache(past)
|
261 |
+
else:
|
262 |
+
bidirectional_mask = torch.ones_like(input_ids)
|
263 |
+
return {'input_ids': input_ids, 'past_key_values': past, 'use_cache': True, 'attention_mask': attention_mask, 'bidirectional_mask': bidirectional_mask}
|
264 |
+
setattr(model, 'forward', MethodType(forward, model))
|
265 |
+
setattr(model, 'prepare_inputs_for_generation', MethodType(prepare_inputs_for_generation, model))
|
266 |
+
setattr(model, '_prefix_lm_converted', True)
|
267 |
+
return model
|
268 |
+
|
269 |
+
def _convert_opt_causal_lm_to_prefix_lm(model: OPTForCausalLM) -> OPTForCausalLM:
|
270 |
+
"""Converts an OPT Causal LM to a Prefix LM.
|
271 |
+
|
272 |
+
Supported HuggingFace model classes:
|
273 |
+
- `OPTForCausalLM`
|
274 |
+
|
275 |
+
See `convert_hf_causal_lm_to_prefix_lm` for more details.
|
276 |
+
"""
|
277 |
+
if hasattr(model, '_prefix_lm_converted'):
|
278 |
+
return model
|
279 |
+
assert isinstance(model, OPTForCausalLM)
|
280 |
+
assert model.config.add_cross_attention == False, 'Only supports OPT decoder-only models'
|
281 |
+
setattr(model, '_original_forward', getattr(model, 'forward'))
|
282 |
+
setattr(model, '_original_generate', getattr(model, 'generate'))
|
283 |
+
model.model.decoder.bidirectional_mask = None
|
284 |
+
|
285 |
+
def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
|
286 |
+
combined_attention_mask = None
|
287 |
+
if input_shape[-1] > 1:
|
288 |
+
if self.bidirectional_mask == 'g':
|
289 |
+
(bsz, src_length) = input_shape
|
290 |
+
combined_attention_mask = torch.zeros((bsz, 1, src_length, src_length + past_key_values_length), dtype=inputs_embeds.dtype, device=inputs_embeds.device)
|
291 |
+
else:
|
292 |
+
combined_attention_mask = _make_causal_mask_opt(input_shape, inputs_embeds.dtype, past_key_values_length=past_key_values_length).to(inputs_embeds.device)
|
293 |
+
if self.bidirectional_mask is not None:
|
294 |
+
assert attention_mask.shape == self.bidirectional_mask.shape
|
295 |
+
expanded_bidirectional_mask = _expand_mask_opt(self.bidirectional_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(inputs_embeds.device)
|
296 |
+
combined_attention_mask = torch.maximum(expanded_bidirectional_mask, combined_attention_mask)
|
297 |
+
if attention_mask is not None:
|
298 |
+
expanded_attn_mask = _expand_mask_opt(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(inputs_embeds.device)
|
299 |
+
combined_attention_mask = expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
|
300 |
+
return combined_attention_mask
|
301 |
+
setattr(model.model.decoder, '_prepare_decoder_attention_mask', MethodType(_prepare_decoder_attention_mask, model.model.decoder))
|
302 |
+
|
303 |
+
def forward(self: OPTForCausalLM, input_ids: Optional[torch.LongTensor]=None, attention_mask: Optional[torch.Tensor]=None, bidirectional_mask: Optional[torch.ByteTensor]=None, head_mask: Optional[torch.Tensor]=None, past_key_values: Optional[List[torch.FloatTensor]]=None, inputs_embeds: Optional[torch.FloatTensor]=None, labels: Optional[torch.LongTensor]=None, use_cache: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, return_dict: Optional[bool]=None):
|
304 |
+
|
305 |
+
def call_og_forward():
|
306 |
+
return self._original_forward(input_ids=input_ids, attention_mask=attention_mask, head_mask=head_mask, past_key_values=past_key_values, inputs_embeds=inputs_embeds, labels=labels, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict)
|
307 |
+
if bidirectional_mask is None:
|
308 |
+
return call_og_forward()
|
309 |
+
self.model.decoder.bidirectional_mask = bidirectional_mask
|
310 |
+
try:
|
311 |
+
outputs = call_og_forward()
|
312 |
+
except:
|
313 |
+
self.model.decoder.bidirectional_mask = None
|
314 |
+
raise
|
315 |
+
self.model.decoder.bidirectional_mask = None
|
316 |
+
return outputs
|
317 |
+
|
318 |
+
def generate(self: OPTForCausalLM, *args: tuple, **kwargs: Dict[str, Any]):
|
319 |
+
"""Wraps original generate to enable PrefixLM-style attention."""
|
320 |
+
self.model.decoder.bidirectional_mask = 'g'
|
321 |
+
try:
|
322 |
+
output = self._original_generate(*args, **kwargs)
|
323 |
+
except:
|
324 |
+
self.model.decoder.bidirectional_mask = None
|
325 |
+
raise
|
326 |
+
self.model.decoder.bidirectional_mask = None
|
327 |
+
return output
|
328 |
+
setattr(model, 'forward', MethodType(forward, model))
|
329 |
+
setattr(model, 'generate', MethodType(generate, model))
|
330 |
+
setattr(model, '_prefix_lm_converted', True)
|
331 |
+
return model
|
332 |
+
_SUPPORTED_HF_MODELS = _SUPPORTED_GPT_MODELS + (BloomForCausalLM, OPTForCausalLM)
|
333 |
+
CAUSAL_LM_TYPES = Union[GPT2LMHeadModel, GPTJForCausalLM, GPTNeoForCausalLM, GPTNeoXForCausalLM, BloomForCausalLM, OPTForCausalLM]
|
334 |
+
|
335 |
+
def convert_hf_causal_lm_to_prefix_lm(model: CAUSAL_LM_TYPES) -> CAUSAL_LM_TYPES:
|
336 |
+
"""Converts a HuggingFace Causal LM to a Prefix LM.
|
337 |
+
|
338 |
+
Supported HuggingFace model classes:
|
339 |
+
- `GPT2LMHeadModel`
|
340 |
+
- `GPTNeoForCausalLM`
|
341 |
+
- `GPTNeoXForCausalLM`
|
342 |
+
- `GPTJForCausalLM`
|
343 |
+
- `BloomForCausalLM`
|
344 |
+
- `OPTForCausalLM`
|
345 |
+
|
346 |
+
Conversion to a Prefix LM is done by modifying the `forward` method, and possibly also the
|
347 |
+
`generate` method and/or select underlying methods depending on the model class.
|
348 |
+
|
349 |
+
These changes preserve the model API, but add a new input to `forward`: "bidirectional_mask".
|
350 |
+
|
351 |
+
Notes on training:
|
352 |
+
To actually train the converted model as a Prefix LM, training batches will need to indicate
|
353 |
+
the prefix/target structure by including `bidirectional_mask` as part of the batch inputs.
|
354 |
+
|
355 |
+
**This is not a standard input and requires custom layers either within or after your dataloader.**
|
356 |
+
|
357 |
+
In addition to adding `bidirectional_mask` to the batch, this custom code should modify `labels`
|
358 |
+
such that `batch['labels'][batch['bidirectional_mask'] == 1] == -100`.
|
359 |
+
That is, the prefix portion of the sequence should not generate any loss. Loss should only be
|
360 |
+
generated by the target portion of the sequence.
|
361 |
+
|
362 |
+
Notes on `GPTNeoForCausalLM`:
|
363 |
+
To simplify the implementation, "global" and "local" attention layers are handled differently.
|
364 |
+
For "global" layers, we handle conversion as described above. For "local" layers, which use a
|
365 |
+
causal attention mask within a restricted local window, we do not alter the masking.
|
366 |
+
|
367 |
+
Notes on `forward` method conversion:
|
368 |
+
After conversion, the `forward` method will handle a new input, `bidirectional_mask`,
|
369 |
+
which should be a [batch_size, seq_length] byte tensor, where 1 indicates token positions
|
370 |
+
belonging to the prefix (prefix tokens can attend to one another bidirectionally), and
|
371 |
+
0 indicates token positions belonging to the target.
|
372 |
+
|
373 |
+
The new `forward` method will incorporate `bidirectional_mask` (if supplied) into the existing
|
374 |
+
causal mask, call the original `forward` method, and (if the causal mask is a buffer) reset
|
375 |
+
the causal masks before returning the result.
|
376 |
+
|
377 |
+
Notes on `generate` method conversion:
|
378 |
+
After conversion, the `generate` method will have the same signature but will internally
|
379 |
+
convert all causal masks to be purely bidirectional, call the original `generate` method, and
|
380 |
+
(where appropriate) reset the causal masks before returning the result.
|
381 |
+
|
382 |
+
This works thanks to the logic of the HuggingFace `generate` API, which first encodes the token
|
383 |
+
"prompt" passed to `generate` (which is treated as the prefix) and then sequentially generates
|
384 |
+
each new token. Encodings are cached as generation happens, so all prefix tokens can attend to one
|
385 |
+
another (as expected in a Prefix LM) and generated tokens can only attend to prefix tokens and
|
386 |
+
previously-generated tokens (also as expected in a Prefix LM).
|
387 |
+
|
388 |
+
To preserve the API, the original methods are renamed to `_original_forward` and
|
389 |
+
`_original_generate`, and replaced with new `forward` and `generate` methods that wrap
|
390 |
+
them, respectively. Although implementation details vary by model class.
|
391 |
+
"""
|
392 |
+
if isinstance(model, _SUPPORTED_GPT_MODELS):
|
393 |
+
return _convert_gpt_causal_lm_to_prefix_lm(model)
|
394 |
+
elif isinstance(model, BloomForCausalLM):
|
395 |
+
return _convert_bloom_causal_lm_to_prefix_lm(model)
|
396 |
+
elif isinstance(model, OPTForCausalLM):
|
397 |
+
return _convert_opt_causal_lm_to_prefix_lm(model)
|
398 |
+
else:
|
399 |
+
raise TypeError(f'Cannot convert model to Prefix LM. ' + f'Model does not belong to set of supported HF models:' + f'\n{_SUPPORTED_HF_MODELS}')
|
400 |
+
|
401 |
+
def add_bidirectional_mask_if_missing(batch: Dict[str, Any]):
|
402 |
+
"""Attempts to add bidirectional_mask to batch if missing.
|
403 |
+
|
404 |
+
Raises:
|
405 |
+
KeyError if bidirectional_mask is missing and can't be inferred
|
406 |
+
"""
|
407 |
+
if 'bidirectional_mask' not in batch:
|
408 |
+
if batch.get('mode', None) == 'icl_task':
|
409 |
+
batch['bidirectional_mask'] = batch['attention_mask'].clone()
|
410 |
+
for (i, continuation_indices) in enumerate(batch['continuation_indices']):
|
411 |
+
batch['bidirectional_mask'][i, continuation_indices] = 0
|
412 |
+
elif 'labels' in batch and 'attention_mask' in batch:
|
413 |
+
batch['bidirectional_mask'] = torch.logical_and(torch.eq(batch['attention_mask'], 1), torch.eq(batch['labels'], -100)).type_as(batch['attention_mask'])
|
414 |
+
else:
|
415 |
+
raise KeyError('No bidirectional_mask in batch and not sure how to construct one.')
|
llava/model/language_model/mpt/meta_init_context.py
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from contextlib import contextmanager
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
|
5 |
+
@contextmanager
|
6 |
+
def init_empty_weights(include_buffers: bool=False):
|
7 |
+
"""Meta initialization context manager.
|
8 |
+
|
9 |
+
A context manager under which models are initialized with all parameters
|
10 |
+
on the meta device, therefore creating an empty model. Useful when just
|
11 |
+
initializing the model would blow the available RAM.
|
12 |
+
|
13 |
+
Args:
|
14 |
+
include_buffers (`bool`, *optional*, defaults to `False`): Whether or
|
15 |
+
not to also put all buffers on the meta device while initializing.
|
16 |
+
|
17 |
+
Example:
|
18 |
+
```python
|
19 |
+
import torch.nn as nn
|
20 |
+
|
21 |
+
# Initialize a model with 100 billions parameters in no time and without using any RAM.
|
22 |
+
with init_empty_weights():
|
23 |
+
tst = nn.Sequential(*[nn.Linear(10000, 10000) for _ in range(1000)])
|
24 |
+
```
|
25 |
+
|
26 |
+
<Tip warning={true}>
|
27 |
+
|
28 |
+
Any model created under this context manager has no weights. As such you can't do something like
|
29 |
+
`model.to(some_device)` with it. To load weights inside your empty model, see [`load_checkpoint_and_dispatch`].
|
30 |
+
|
31 |
+
</Tip>
|
32 |
+
"""
|
33 |
+
with init_on_device(torch.device('meta'), include_buffers=include_buffers) as f:
|
34 |
+
yield f
|
35 |
+
|
36 |
+
@contextmanager
|
37 |
+
def init_on_device(device: torch.device, include_buffers: bool=False):
|
38 |
+
"""Device initialization context manager.
|
39 |
+
|
40 |
+
A context manager under which models are initialized with all parameters
|
41 |
+
on the specified device.
|
42 |
+
|
43 |
+
Args:
|
44 |
+
device (`torch.device`): Device to initialize all parameters on.
|
45 |
+
include_buffers (`bool`, *optional*, defaults to `False`): Whether or
|
46 |
+
not to also put all buffers on the meta device while initializing.
|
47 |
+
|
48 |
+
Example:
|
49 |
+
```python
|
50 |
+
import torch.nn as nn
|
51 |
+
|
52 |
+
with init_on_device(device=torch.device("cuda")):
|
53 |
+
tst = nn.Liner(100, 100) # on `cuda` device
|
54 |
+
```
|
55 |
+
"""
|
56 |
+
old_register_parameter = nn.Module.register_parameter
|
57 |
+
if include_buffers:
|
58 |
+
old_register_buffer = nn.Module.register_buffer
|
59 |
+
|
60 |
+
def register_empty_parameter(module, name, param):
|
61 |
+
old_register_parameter(module, name, param)
|
62 |
+
if param is not None:
|
63 |
+
param_cls = type(module._parameters[name])
|
64 |
+
kwargs = module._parameters[name].__dict__
|
65 |
+
module._parameters[name] = param_cls(module._parameters[name].to(device), **kwargs)
|
66 |
+
|
67 |
+
def register_empty_buffer(module, name, buffer):
|
68 |
+
old_register_buffer(module, name, buffer)
|
69 |
+
if buffer is not None:
|
70 |
+
module._buffers[name] = module._buffers[name].to(device)
|
71 |
+
if include_buffers:
|
72 |
+
tensor_constructors_to_patch = {torch_function_name: getattr(torch, torch_function_name) for torch_function_name in ['empty', 'zeros', 'ones', 'full']}
|
73 |
+
else:
|
74 |
+
tensor_constructors_to_patch = {}
|
75 |
+
|
76 |
+
def patch_tensor_constructor(fn):
|
77 |
+
|
78 |
+
def wrapper(*args, **kwargs):
|
79 |
+
kwargs['device'] = device
|
80 |
+
return fn(*args, **kwargs)
|
81 |
+
return wrapper
|
82 |
+
try:
|
83 |
+
nn.Module.register_parameter = register_empty_parameter
|
84 |
+
if include_buffers:
|
85 |
+
nn.Module.register_buffer = register_empty_buffer
|
86 |
+
for torch_function_name in tensor_constructors_to_patch.keys():
|
87 |
+
setattr(torch, torch_function_name, patch_tensor_constructor(getattr(torch, torch_function_name)))
|
88 |
+
yield
|
89 |
+
finally:
|
90 |
+
nn.Module.register_parameter = old_register_parameter
|
91 |
+
if include_buffers:
|
92 |
+
nn.Module.register_buffer = old_register_buffer
|
93 |
+
for (torch_function_name, old_torch_function) in tensor_constructors_to_patch.items():
|
94 |
+
setattr(torch, torch_function_name, old_torch_function)
|
llava/model/language_model/mpt/modeling_mpt.py
ADDED
@@ -0,0 +1,331 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""A simple, flexible implementation of a GPT model.
|
2 |
+
|
3 |
+
Inspired by https://github.com/karpathy/minGPT/blob/master/mingpt/model.py
|
4 |
+
"""
|
5 |
+
import math
|
6 |
+
import warnings
|
7 |
+
from typing import List, Optional, Tuple, Union
|
8 |
+
import torch
|
9 |
+
import torch.nn as nn
|
10 |
+
import torch.nn.functional as F
|
11 |
+
from transformers import PreTrainedModel, PreTrainedTokenizer, PreTrainedTokenizerFast
|
12 |
+
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
|
13 |
+
from .attention import attn_bias_shape, build_attn_bias
|
14 |
+
from .blocks import MPTBlock
|
15 |
+
from .custom_embedding import SharedEmbedding
|
16 |
+
from .norm import NORM_CLASS_REGISTRY
|
17 |
+
from .configuration_mpt import MPTConfig
|
18 |
+
from .adapt_tokenizer import AutoTokenizerForMOD, adapt_tokenizer_for_denoising
|
19 |
+
from .hf_prefixlm_converter import add_bidirectional_mask_if_missing, convert_hf_causal_lm_to_prefix_lm
|
20 |
+
from .meta_init_context import init_empty_weights
|
21 |
+
from .param_init_fns import MODEL_INIT_REGISTRY, generic_param_init_fn_
|
22 |
+
try:
|
23 |
+
from .flash_attn_triton import flash_attn_func
|
24 |
+
except:
|
25 |
+
pass
|
26 |
+
Tokenizer = Union[PreTrainedTokenizer, PreTrainedTokenizerFast]
|
27 |
+
|
28 |
+
class MPTPreTrainedModel(PreTrainedModel):
|
29 |
+
config_class = MPTConfig
|
30 |
+
base_model_prefix = 'model'
|
31 |
+
_no_split_modules = ['MPTBlock']
|
32 |
+
|
33 |
+
class MPTModel(MPTPreTrainedModel):
|
34 |
+
|
35 |
+
def __init__(self, config: MPTConfig):
|
36 |
+
config._validate_config()
|
37 |
+
super().__init__(config)
|
38 |
+
self.attn_impl = config.attn_config['attn_impl']
|
39 |
+
self.prefix_lm = config.attn_config['prefix_lm']
|
40 |
+
self.attn_uses_sequence_id = config.attn_config['attn_uses_sequence_id']
|
41 |
+
self.alibi = config.attn_config['alibi']
|
42 |
+
self.alibi_bias_max = config.attn_config['alibi_bias_max']
|
43 |
+
if config.init_device == 'mixed':
|
44 |
+
if dist.get_local_rank() == 0:
|
45 |
+
config.init_device = 'cpu'
|
46 |
+
else:
|
47 |
+
config.init_device = 'meta'
|
48 |
+
if config.norm_type.lower() not in NORM_CLASS_REGISTRY.keys():
|
49 |
+
norm_options = ' | '.join(NORM_CLASS_REGISTRY.keys())
|
50 |
+
raise NotImplementedError(f'Requested norm type ({config.norm_type}) is not implemented within this repo (Options: {norm_options}).')
|
51 |
+
norm_class = NORM_CLASS_REGISTRY[config.norm_type.lower()]
|
52 |
+
self.embedding_fraction = config.embedding_fraction
|
53 |
+
self.wte = SharedEmbedding(config.vocab_size, config.d_model, device=config.init_device)
|
54 |
+
if not self.alibi:
|
55 |
+
self.wpe = torch.nn.Embedding(config.max_seq_len, config.d_model, device=config.init_device)
|
56 |
+
self.emb_drop = nn.Dropout(config.emb_pdrop)
|
57 |
+
self.blocks = nn.ModuleList([MPTBlock(device=config.init_device, **config.to_dict()) for _ in range(config.n_layers)])
|
58 |
+
self.norm_f = norm_class(config.d_model, device=config.init_device)
|
59 |
+
if config.init_device != 'meta':
|
60 |
+
print(f'You are using config.init_device={config.init_device!r}, but you can also use config.init_device="meta" with Composer + FSDP for fast initialization.')
|
61 |
+
self.apply(self.param_init_fn)
|
62 |
+
self.is_causal = not self.prefix_lm
|
63 |
+
self._attn_bias_initialized = False
|
64 |
+
self.attn_bias = None
|
65 |
+
self.attn_bias_shape = attn_bias_shape(self.attn_impl, config.n_heads, config.max_seq_len, self.alibi, prefix_lm=self.prefix_lm, causal=self.is_causal, use_sequence_id=self.attn_uses_sequence_id)
|
66 |
+
if config.no_bias:
|
67 |
+
for module in self.modules():
|
68 |
+
if hasattr(module, 'bias') and isinstance(module.bias, nn.Parameter):
|
69 |
+
if config.verbose:
|
70 |
+
warnings.warn(f'Removing bias ({module.bias}) from {module}.')
|
71 |
+
module.register_parameter('bias', None)
|
72 |
+
if config.verbose and config.verbose > 2:
|
73 |
+
print(self)
|
74 |
+
if 'verbose' not in self.config.init_config:
|
75 |
+
self.config.init_config['verbose'] = self.config.verbose
|
76 |
+
if self.config.init_config['verbose'] > 1:
|
77 |
+
init_fn_name = self.config.init_config['name']
|
78 |
+
warnings.warn(f'Using {init_fn_name} initialization.')
|
79 |
+
self.gradient_checkpointing = False
|
80 |
+
|
81 |
+
def get_input_embeddings(self):
|
82 |
+
return self.wte
|
83 |
+
|
84 |
+
def set_input_embeddings(self, value):
|
85 |
+
self.wte = value
|
86 |
+
|
87 |
+
@torch.no_grad()
|
88 |
+
def _attn_bias(self, device, dtype, attention_mask: Optional[torch.ByteTensor]=None, prefix_mask: Optional[torch.ByteTensor]=None, sequence_id: Optional[torch.LongTensor]=None):
|
89 |
+
if not self._attn_bias_initialized:
|
90 |
+
if self.attn_bias_shape:
|
91 |
+
self.attn_bias = torch.zeros(self.attn_bias_shape, device=device, dtype=dtype)
|
92 |
+
self.attn_bias = build_attn_bias(self.attn_impl, self.attn_bias, self.config.n_heads, self.config.max_seq_len, causal=self.is_causal, alibi=self.alibi, alibi_bias_max=self.alibi_bias_max)
|
93 |
+
self._attn_bias_initialized = True
|
94 |
+
if self.attn_impl == 'flash':
|
95 |
+
return (self.attn_bias, attention_mask)
|
96 |
+
if self.attn_bias is not None:
|
97 |
+
self.attn_bias = self.attn_bias.to(dtype=dtype, device=device)
|
98 |
+
attn_bias = self.attn_bias
|
99 |
+
if self.prefix_lm:
|
100 |
+
assert isinstance(attn_bias, torch.Tensor)
|
101 |
+
assert isinstance(prefix_mask, torch.Tensor)
|
102 |
+
attn_bias = self._apply_prefix_mask(attn_bias, prefix_mask)
|
103 |
+
if self.attn_uses_sequence_id and sequence_id is not None:
|
104 |
+
assert isinstance(attn_bias, torch.Tensor)
|
105 |
+
attn_bias = self._apply_sequence_id(attn_bias, sequence_id)
|
106 |
+
if attention_mask is not None:
|
107 |
+
s_k = attention_mask.shape[-1]
|
108 |
+
if attn_bias is None:
|
109 |
+
attn_bias = torch.zeros((1, 1, 1, s_k), device=device, dtype=dtype)
|
110 |
+
else:
|
111 |
+
_s_k = max(0, attn_bias.size(-1) - s_k)
|
112 |
+
attn_bias = attn_bias[:, :, :, _s_k:]
|
113 |
+
if prefix_mask is not None and attention_mask.shape != prefix_mask.shape:
|
114 |
+
raise ValueError(f'attention_mask shape={attention_mask.shape} ' + f'and prefix_mask shape={prefix_mask.shape} are not equal.')
|
115 |
+
min_val = torch.finfo(attn_bias.dtype).min
|
116 |
+
attn_bias = attn_bias.masked_fill(~attention_mask.view(-1, 1, 1, s_k), min_val)
|
117 |
+
return (attn_bias, None)
|
118 |
+
|
119 |
+
def _apply_prefix_mask(self, attn_bias: torch.Tensor, prefix_mask: torch.Tensor):
|
120 |
+
(s_k, s_q) = attn_bias.shape[-2:]
|
121 |
+
if s_k != self.config.max_seq_len or s_q != self.config.max_seq_len:
|
122 |
+
raise ValueError('attn_bias does not match the expected shape. ' + f'The last two dimensions should both be {self.config.max_length} ' + f'but are {s_k} and {s_q}.')
|
123 |
+
seq_len = prefix_mask.shape[-1]
|
124 |
+
if seq_len > self.config.max_seq_len:
|
125 |
+
raise ValueError(f'prefix_mask sequence length cannot exceed max_seq_len={self.config.max_seq_len}')
|
126 |
+
attn_bias = attn_bias[..., :seq_len, :seq_len]
|
127 |
+
causal = torch.tril(torch.ones((seq_len, seq_len), dtype=torch.bool, device=prefix_mask.device)).view(1, 1, seq_len, seq_len)
|
128 |
+
prefix = prefix_mask.view(-1, 1, 1, seq_len)
|
129 |
+
cannot_attend = ~torch.logical_or(causal, prefix.bool())
|
130 |
+
min_val = torch.finfo(attn_bias.dtype).min
|
131 |
+
attn_bias = attn_bias.masked_fill(cannot_attend, min_val)
|
132 |
+
return attn_bias
|
133 |
+
|
134 |
+
def _apply_sequence_id(self, attn_bias: torch.Tensor, sequence_id: torch.LongTensor):
|
135 |
+
seq_len = sequence_id.shape[-1]
|
136 |
+
if seq_len > self.config.max_seq_len:
|
137 |
+
raise ValueError(f'sequence_id sequence length cannot exceed max_seq_len={self.config.max_seq_len}')
|
138 |
+
attn_bias = attn_bias[..., :seq_len, :seq_len]
|
139 |
+
cannot_attend = torch.logical_not(torch.eq(sequence_id.view(-1, seq_len, 1), sequence_id.view(-1, 1, seq_len))).unsqueeze(1)
|
140 |
+
min_val = torch.finfo(attn_bias.dtype).min
|
141 |
+
attn_bias = attn_bias.masked_fill(cannot_attend, min_val)
|
142 |
+
return attn_bias
|
143 |
+
|
144 |
+
def forward(self, input_ids: torch.LongTensor, past_key_values: Optional[List[Tuple[torch.FloatTensor]]]=None, attention_mask: Optional[torch.ByteTensor]=None, prefix_mask: Optional[torch.ByteTensor]=None, sequence_id: Optional[torch.LongTensor]=None, return_dict: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, use_cache: Optional[bool]=None, inputs_embeds: Optional[torch.Tensor]=None):
|
145 |
+
return_dict = return_dict if return_dict is not None else self.config.return_dict
|
146 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
147 |
+
if attention_mask is not None:
|
148 |
+
attention_mask = attention_mask.bool()
|
149 |
+
if prefix_mask is not None:
|
150 |
+
prefix_mask = prefix_mask.bool()
|
151 |
+
if not return_dict:
|
152 |
+
raise NotImplementedError('return_dict False is not implemented yet for MPT')
|
153 |
+
if output_attentions:
|
154 |
+
if self.attn_impl != 'torch':
|
155 |
+
raise NotImplementedError('output_attentions is not implemented for MPT when using attn_impl `flash` or `triton`.')
|
156 |
+
if attention_mask is not None and attention_mask[:, 0].sum() != attention_mask.shape[0] and self.training:
|
157 |
+
raise NotImplementedError('MPT does not support training with left padding.')
|
158 |
+
if self.prefix_lm and prefix_mask is None:
|
159 |
+
raise ValueError('prefix_mask is a required argument when MPT is configured with prefix_lm=True.')
|
160 |
+
if self.training:
|
161 |
+
if self.attn_uses_sequence_id and sequence_id is None:
|
162 |
+
raise ValueError('sequence_id is a required argument when MPT is configured with attn_uses_sequence_id=True ' + 'and the model is in train mode.')
|
163 |
+
elif self.attn_uses_sequence_id is False and sequence_id is not None:
|
164 |
+
warnings.warn('MPT received non-None input for `sequence_id` but is configured with attn_uses_sequence_id=False. ' + 'This input will be ignored. If you want the model to use `sequence_id`, set attn_uses_sequence_id to True.')
|
165 |
+
if input_ids is not None:
|
166 |
+
S = input_ids.size(1)
|
167 |
+
assert S <= self.config.max_seq_len, f'Cannot forward input with seq_len={S}, this model only supports seq_len<={self.config.max_seq_len}'
|
168 |
+
tok_emb = self.wte(input_ids)
|
169 |
+
else:
|
170 |
+
assert inputs_embeds is not None
|
171 |
+
assert self.alibi, 'inputs_embeds is not implemented for MPT unless for alibi.'
|
172 |
+
S = inputs_embeds.size(1)
|
173 |
+
tok_emb = inputs_embeds
|
174 |
+
if self.alibi:
|
175 |
+
x = tok_emb
|
176 |
+
else:
|
177 |
+
past_position = 0
|
178 |
+
if past_key_values is not None:
|
179 |
+
if len(past_key_values) != self.config.n_layers:
|
180 |
+
raise ValueError(f'past_key_values must provide a past_key_value for each attention ' + f'layer in the network (len(past_key_values)={len(past_key_values)!r}; self.config.n_layers={self.config.n_layers!r}).')
|
181 |
+
past_position = past_key_values[0][0].size(1)
|
182 |
+
if self.attn_impl == 'torch':
|
183 |
+
past_position = past_key_values[0][0].size(3)
|
184 |
+
if S + past_position > self.config.max_seq_len:
|
185 |
+
raise ValueError(f'Cannot forward input with past sequence length {past_position} and current sequence length {S + 1}, this model only supports total sequence length <= {self.config.max_seq_len}.')
|
186 |
+
pos = torch.arange(past_position, S + past_position, dtype=torch.long, device=input_ids.device).unsqueeze(0)
|
187 |
+
if attention_mask is not None:
|
188 |
+
pos = torch.clamp(pos - torch.cumsum((~attention_mask).to(torch.int32), dim=1)[:, past_position:], min=0)
|
189 |
+
pos_emb = self.wpe(pos)
|
190 |
+
x = tok_emb + pos_emb
|
191 |
+
if self.embedding_fraction == 1:
|
192 |
+
x = self.emb_drop(x)
|
193 |
+
else:
|
194 |
+
x_shrunk = x * self.embedding_fraction + x.detach() * (1 - self.embedding_fraction)
|
195 |
+
assert isinstance(self.emb_drop, nn.Module)
|
196 |
+
x = self.emb_drop(x_shrunk)
|
197 |
+
(attn_bias, attention_mask) = self._attn_bias(device=x.device, dtype=torch.float32, attention_mask=attention_mask, prefix_mask=prefix_mask, sequence_id=sequence_id)
|
198 |
+
if use_cache and past_key_values is None:
|
199 |
+
past_key_values = [() for _ in range(self.config.n_layers)]
|
200 |
+
all_hidden_states = () if output_hidden_states else None
|
201 |
+
all_self_attns = () if output_attentions else None
|
202 |
+
for (b_idx, block) in enumerate(self.blocks):
|
203 |
+
if output_hidden_states:
|
204 |
+
assert all_hidden_states is not None
|
205 |
+
all_hidden_states = all_hidden_states + (x,)
|
206 |
+
past_key_value = past_key_values[b_idx] if past_key_values is not None else None
|
207 |
+
if self.gradient_checkpointing and self.training:
|
208 |
+
(x, attn_weights, past_key_value) = torch.utils.checkpoint.checkpoint(block, x, past_key_value, attn_bias, attention_mask, self.is_causal)
|
209 |
+
else:
|
210 |
+
(x, attn_weights, past_key_value) = block(x, past_key_value=past_key_value, attn_bias=attn_bias, attention_mask=attention_mask, is_causal=self.is_causal)
|
211 |
+
if past_key_values is not None:
|
212 |
+
past_key_values[b_idx] = past_key_value
|
213 |
+
if output_attentions:
|
214 |
+
assert all_self_attns is not None
|
215 |
+
all_self_attns = all_self_attns + (attn_weights,)
|
216 |
+
x = self.norm_f(x)
|
217 |
+
if output_hidden_states:
|
218 |
+
assert all_hidden_states is not None
|
219 |
+
all_hidden_states = all_hidden_states + (x,)
|
220 |
+
return BaseModelOutputWithPast(last_hidden_state=x, past_key_values=past_key_values, hidden_states=all_hidden_states, attentions=all_self_attns)
|
221 |
+
|
222 |
+
def param_init_fn(self, module):
|
223 |
+
init_fn_name = self.config.init_config['name']
|
224 |
+
MODEL_INIT_REGISTRY[init_fn_name](module=module, n_layers=self.config.n_layers, d_model=self.config.d_model, **self.config.init_config)
|
225 |
+
|
226 |
+
def fsdp_wrap_fn(self, module):
|
227 |
+
return isinstance(module, MPTBlock)
|
228 |
+
|
229 |
+
def activation_checkpointing_fn(self, module):
|
230 |
+
return isinstance(module, MPTBlock)
|
231 |
+
|
232 |
+
class MPTForCausalLM(MPTPreTrainedModel):
|
233 |
+
|
234 |
+
def __init__(self, config: MPTConfig):
|
235 |
+
super().__init__(config)
|
236 |
+
if not config.tie_word_embeddings:
|
237 |
+
raise ValueError('MPTForCausalLM only supports tied word embeddings')
|
238 |
+
print(f'Instantiating an MPTForCausalLM model from {__file__}')
|
239 |
+
self.transformer = MPTModel(config)
|
240 |
+
for child in self.transformer.children():
|
241 |
+
if isinstance(child, torch.nn.ModuleList):
|
242 |
+
continue
|
243 |
+
if isinstance(child, torch.nn.Module):
|
244 |
+
child._fsdp_wrap = True
|
245 |
+
self.logit_scale = None
|
246 |
+
if config.logit_scale is not None:
|
247 |
+
logit_scale = config.logit_scale
|
248 |
+
if isinstance(logit_scale, str):
|
249 |
+
if logit_scale == 'inv_sqrt_d_model':
|
250 |
+
logit_scale = 1 / math.sqrt(config.d_model)
|
251 |
+
else:
|
252 |
+
raise ValueError(f"logit_scale={logit_scale!r} is not recognized as an option; use numeric value or 'inv_sqrt_d_model'.")
|
253 |
+
self.logit_scale = logit_scale
|
254 |
+
|
255 |
+
def get_input_embeddings(self):
|
256 |
+
return self.transformer.wte
|
257 |
+
|
258 |
+
def set_input_embeddings(self, value):
|
259 |
+
self.transformer.wte = value
|
260 |
+
|
261 |
+
def get_output_embeddings(self):
|
262 |
+
return self.transformer.wte
|
263 |
+
|
264 |
+
def set_output_embeddings(self, new_embeddings):
|
265 |
+
self.transformer.wte = new_embeddings
|
266 |
+
|
267 |
+
def set_decoder(self, decoder):
|
268 |
+
self.transformer = decoder
|
269 |
+
|
270 |
+
def get_decoder(self):
|
271 |
+
return self.transformer
|
272 |
+
|
273 |
+
def forward(self, input_ids: torch.LongTensor, past_key_values: Optional[List[Tuple[torch.FloatTensor]]]=None, attention_mask: Optional[torch.ByteTensor]=None, prefix_mask: Optional[torch.ByteTensor]=None, sequence_id: Optional[torch.LongTensor]=None, labels: Optional[torch.LongTensor]=None, return_dict: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, use_cache: Optional[bool]=None, inputs_embeds: Optional[torch.FloatTensor]=None):
|
274 |
+
return_dict = return_dict if return_dict is not None else self.config.return_dict
|
275 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
276 |
+
if inputs_embeds is not None:
|
277 |
+
raise NotImplementedError('inputs_embeds has to be None (for hf/peft support).')
|
278 |
+
outputs = self.transformer(input_ids=input_ids, past_key_values=past_key_values, attention_mask=attention_mask, prefix_mask=prefix_mask, sequence_id=sequence_id, return_dict=return_dict, output_attentions=output_attentions, output_hidden_states=output_hidden_states, use_cache=use_cache)
|
279 |
+
logits = self.transformer.wte(outputs.last_hidden_state.to(self.transformer.wte.weight.device), True)
|
280 |
+
if self.logit_scale is not None:
|
281 |
+
if self.logit_scale == 0:
|
282 |
+
warnings.warn(f'Multiplying logits by self.logit_scale={self.logit_scale!r}. This will produce uniform (uninformative) outputs.')
|
283 |
+
logits *= self.logit_scale
|
284 |
+
loss = None
|
285 |
+
if labels is not None:
|
286 |
+
labels = torch.roll(labels, shifts=-1)
|
287 |
+
labels[:, -1] = -100
|
288 |
+
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), labels.to(logits.device).view(-1))
|
289 |
+
return CausalLMOutputWithPast(loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions)
|
290 |
+
|
291 |
+
def param_init_fn(self, module):
|
292 |
+
init_fn_name = self.config.init_config['name']
|
293 |
+
MODEL_INIT_REGISTRY[init_fn_name](module=module, n_layers=self.config.n_layers, d_model=self.config.d_model, **self.config.init_config)
|
294 |
+
|
295 |
+
def fsdp_wrap_fn(self, module):
|
296 |
+
return isinstance(module, MPTBlock)
|
297 |
+
|
298 |
+
def activation_checkpointing_fn(self, module):
|
299 |
+
return isinstance(module, MPTBlock)
|
300 |
+
|
301 |
+
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs):
|
302 |
+
if inputs_embeds is not None:
|
303 |
+
raise NotImplementedError('inputs_embeds is not implemented for MPT yet')
|
304 |
+
attention_mask = kwargs['attention_mask'].bool()
|
305 |
+
if attention_mask[:, -1].sum() != attention_mask.shape[0]:
|
306 |
+
raise NotImplementedError('MPT does not support generation with right padding.')
|
307 |
+
if self.transformer.attn_uses_sequence_id and self.training:
|
308 |
+
sequence_id = torch.zeros_like(input_ids[:1])
|
309 |
+
else:
|
310 |
+
sequence_id = None
|
311 |
+
if past_key_values is not None:
|
312 |
+
input_ids = input_ids[:, -1].unsqueeze(-1)
|
313 |
+
if self.transformer.prefix_lm:
|
314 |
+
prefix_mask = torch.ones_like(attention_mask)
|
315 |
+
if kwargs.get('use_cache') == False:
|
316 |
+
raise NotImplementedError('MPT with prefix_lm=True does not support use_cache=False.')
|
317 |
+
else:
|
318 |
+
prefix_mask = None
|
319 |
+
return {'input_ids': input_ids, 'attention_mask': attention_mask, 'prefix_mask': prefix_mask, 'sequence_id': sequence_id, 'past_key_values': past_key_values, 'use_cache': kwargs.get('use_cache', True)}
|
320 |
+
|
321 |
+
@staticmethod
|
322 |
+
def _reorder_cache(past_key_values, beam_idx):
|
323 |
+
"""Used by HuggingFace generate when using beam search with kv-caching.
|
324 |
+
|
325 |
+
See https://github.com/huggingface/transformers/blob/3ec7a47664ebe40c40f4b722f6bb1cd30c3821ec/src/transformers/models/gpt2/modeling_gpt2.py#L1122-L1133
|
326 |
+
for an example in transformers.
|
327 |
+
"""
|
328 |
+
reordered_past = []
|
329 |
+
for layer_past in past_key_values:
|
330 |
+
reordered_past += [tuple((past_state.index_select(0, beam_idx) for past_state in layer_past))]
|
331 |
+
return reordered_past
|
llava/model/language_model/mpt/norm.py
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
def _cast_if_autocast_enabled(tensor):
|
4 |
+
if torch.is_autocast_enabled():
|
5 |
+
if tensor.device.type == 'cuda':
|
6 |
+
dtype = torch.get_autocast_gpu_dtype()
|
7 |
+
elif tensor.device.type == 'cpu':
|
8 |
+
dtype = torch.get_autocast_cpu_dtype()
|
9 |
+
else:
|
10 |
+
raise NotImplementedError()
|
11 |
+
return tensor.to(dtype=dtype)
|
12 |
+
return tensor
|
13 |
+
|
14 |
+
class LPLayerNorm(torch.nn.LayerNorm):
|
15 |
+
|
16 |
+
def __init__(self, normalized_shape, eps=1e-05, elementwise_affine=True, device=None, dtype=None):
|
17 |
+
super().__init__(normalized_shape=normalized_shape, eps=eps, elementwise_affine=elementwise_affine, device=device, dtype=dtype)
|
18 |
+
|
19 |
+
def forward(self, x):
|
20 |
+
module_device = x.device
|
21 |
+
downcast_x = _cast_if_autocast_enabled(x)
|
22 |
+
downcast_weight = _cast_if_autocast_enabled(self.weight) if self.weight is not None else self.weight
|
23 |
+
downcast_bias = _cast_if_autocast_enabled(self.bias) if self.bias is not None else self.bias
|
24 |
+
with torch.autocast(enabled=False, device_type=module_device.type):
|
25 |
+
return torch.nn.functional.layer_norm(downcast_x, self.normalized_shape, downcast_weight, downcast_bias, self.eps)
|
26 |
+
|
27 |
+
def rms_norm(x, weight=None, eps=1e-05):
|
28 |
+
output = x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + eps)
|
29 |
+
if weight is not None:
|
30 |
+
return output * weight
|
31 |
+
return output
|
32 |
+
|
33 |
+
class RMSNorm(torch.nn.Module):
|
34 |
+
|
35 |
+
def __init__(self, normalized_shape, eps=1e-05, weight=True, dtype=None, device=None):
|
36 |
+
super().__init__()
|
37 |
+
self.eps = eps
|
38 |
+
if weight:
|
39 |
+
self.weight = torch.nn.Parameter(torch.ones(normalized_shape, dtype=dtype, device=device))
|
40 |
+
else:
|
41 |
+
self.register_parameter('weight', None)
|
42 |
+
|
43 |
+
def forward(self, x):
|
44 |
+
return rms_norm(x.float(), self.weight, self.eps).to(dtype=x.dtype)
|
45 |
+
|
46 |
+
class LPRMSNorm(RMSNorm):
|
47 |
+
|
48 |
+
def __init__(self, normalized_shape, eps=1e-05, weight=True, dtype=None, device=None):
|
49 |
+
super().__init__(normalized_shape=normalized_shape, eps=eps, weight=weight, dtype=dtype, device=device)
|
50 |
+
|
51 |
+
def forward(self, x):
|
52 |
+
downcast_x = _cast_if_autocast_enabled(x)
|
53 |
+
downcast_weight = _cast_if_autocast_enabled(self.weight) if self.weight is not None else self.weight
|
54 |
+
with torch.autocast(enabled=False, device_type=x.device.type):
|
55 |
+
return rms_norm(downcast_x, downcast_weight, self.eps).to(dtype=x.dtype)
|
56 |
+
NORM_CLASS_REGISTRY = {'layernorm': torch.nn.LayerNorm, 'low_precision_layernorm': LPLayerNorm, 'rmsnorm': RMSNorm, 'low_precision_rmsnorm': LPRMSNorm}
|
llava/model/language_model/mpt/param_init_fns.py
ADDED
@@ -0,0 +1,181 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import warnings
|
3 |
+
from collections.abc import Sequence
|
4 |
+
from functools import partial
|
5 |
+
from typing import Optional, Tuple, Union
|
6 |
+
import torch
|
7 |
+
from torch import nn
|
8 |
+
from .norm import NORM_CLASS_REGISTRY
|
9 |
+
|
10 |
+
def torch_default_param_init_fn_(module: nn.Module, verbose: int=0, **kwargs):
|
11 |
+
del kwargs
|
12 |
+
if verbose > 1:
|
13 |
+
warnings.warn(f"Initializing network using module's reset_parameters attribute")
|
14 |
+
if hasattr(module, 'reset_parameters'):
|
15 |
+
module.reset_parameters()
|
16 |
+
|
17 |
+
def fused_init_helper_(module: nn.Module, init_fn_):
|
18 |
+
_fused = getattr(module, '_fused', None)
|
19 |
+
if _fused is None:
|
20 |
+
raise RuntimeError(f'Internal logic error')
|
21 |
+
(dim, splits) = _fused
|
22 |
+
splits = (0, *splits, module.weight.size(dim))
|
23 |
+
for (s, e) in zip(splits[:-1], splits[1:]):
|
24 |
+
slice_indices = [slice(None)] * module.weight.ndim
|
25 |
+
slice_indices[dim] = slice(s, e)
|
26 |
+
init_fn_(module.weight[slice_indices])
|
27 |
+
|
28 |
+
def generic_param_init_fn_(module: nn.Module, init_fn_, n_layers: int, d_model: Optional[int]=None, init_div_is_residual: Union[int, float, str, bool]=True, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]]=None, verbose: int=0, **kwargs):
|
29 |
+
del kwargs
|
30 |
+
if verbose > 1:
|
31 |
+
warnings.warn(f'If model has bias parameters they are initialized to 0.')
|
32 |
+
init_div_is_residual = init_div_is_residual
|
33 |
+
if init_div_is_residual is False:
|
34 |
+
div_is_residual = 1.0
|
35 |
+
elif init_div_is_residual is True:
|
36 |
+
div_is_residual = math.sqrt(2 * n_layers)
|
37 |
+
elif isinstance(init_div_is_residual, float) or isinstance(init_div_is_residual, int):
|
38 |
+
div_is_residual = init_div_is_residual
|
39 |
+
elif isinstance(init_div_is_residual, str) and init_div_is_residual.isnumeric():
|
40 |
+
div_is_residual = float(init_div_is_residual)
|
41 |
+
else:
|
42 |
+
div_is_residual = 1.0
|
43 |
+
raise ValueError(f'Expected init_div_is_residual to be boolean or numeric, got {init_div_is_residual}')
|
44 |
+
if init_div_is_residual is not False:
|
45 |
+
if verbose > 1:
|
46 |
+
warnings.warn(f'Initializing _is_residual layers then dividing them by {div_is_residual:.3f}. ' + f'Set `init_div_is_residual: false` in init config to disable this.')
|
47 |
+
if isinstance(module, nn.Linear):
|
48 |
+
if hasattr(module, '_fused'):
|
49 |
+
fused_init_helper_(module, init_fn_)
|
50 |
+
else:
|
51 |
+
init_fn_(module.weight)
|
52 |
+
if module.bias is not None:
|
53 |
+
torch.nn.init.zeros_(module.bias)
|
54 |
+
if init_div_is_residual is not False and getattr(module, '_is_residual', False):
|
55 |
+
with torch.no_grad():
|
56 |
+
module.weight.div_(div_is_residual)
|
57 |
+
elif isinstance(module, nn.Embedding):
|
58 |
+
if emb_init_std is not None:
|
59 |
+
std = emb_init_std
|
60 |
+
if std == 0:
|
61 |
+
warnings.warn(f'Embedding layer initialized to 0.')
|
62 |
+
emb_init_fn_ = partial(torch.nn.init.normal_, mean=0.0, std=std)
|
63 |
+
if verbose > 1:
|
64 |
+
warnings.warn(f'Embedding layer initialized using normal distribution with mean=0 and std={std!r}.')
|
65 |
+
elif emb_init_uniform_lim is not None:
|
66 |
+
lim = emb_init_uniform_lim
|
67 |
+
if isinstance(lim, Sequence):
|
68 |
+
if len(lim) > 2:
|
69 |
+
raise ValueError(f'Uniform init requires a min and a max limit. User input: {lim}.')
|
70 |
+
if lim[0] == lim[1]:
|
71 |
+
warnings.warn(f'Embedding layer initialized to {lim[0]}.')
|
72 |
+
else:
|
73 |
+
if lim == 0:
|
74 |
+
warnings.warn(f'Embedding layer initialized to 0.')
|
75 |
+
lim = [-lim, lim]
|
76 |
+
(a, b) = lim
|
77 |
+
emb_init_fn_ = partial(torch.nn.init.uniform_, a=a, b=b)
|
78 |
+
if verbose > 1:
|
79 |
+
warnings.warn(f'Embedding layer initialized using uniform distribution in range {lim}.')
|
80 |
+
else:
|
81 |
+
emb_init_fn_ = init_fn_
|
82 |
+
emb_init_fn_(module.weight)
|
83 |
+
elif isinstance(module, tuple(set(NORM_CLASS_REGISTRY.values()))):
|
84 |
+
if verbose > 1:
|
85 |
+
warnings.warn(f'Norm weights are set to 1. If norm layer has a bias it is initialized to 0.')
|
86 |
+
if hasattr(module, 'weight') and module.weight is not None:
|
87 |
+
torch.nn.init.ones_(module.weight)
|
88 |
+
if hasattr(module, 'bias') and module.bias is not None:
|
89 |
+
torch.nn.init.zeros_(module.bias)
|
90 |
+
elif isinstance(module, nn.MultiheadAttention):
|
91 |
+
if module._qkv_same_embed_dim:
|
92 |
+
assert module.in_proj_weight is not None
|
93 |
+
assert module.q_proj_weight is None and module.k_proj_weight is None and (module.v_proj_weight is None)
|
94 |
+
assert d_model is not None
|
95 |
+
_d = d_model
|
96 |
+
splits = (0, _d, 2 * _d, 3 * _d)
|
97 |
+
for (s, e) in zip(splits[:-1], splits[1:]):
|
98 |
+
init_fn_(module.in_proj_weight[s:e])
|
99 |
+
else:
|
100 |
+
assert module.q_proj_weight is not None and module.k_proj_weight is not None and (module.v_proj_weight is not None)
|
101 |
+
assert module.in_proj_weight is None
|
102 |
+
init_fn_(module.q_proj_weight)
|
103 |
+
init_fn_(module.k_proj_weight)
|
104 |
+
init_fn_(module.v_proj_weight)
|
105 |
+
if module.in_proj_bias is not None:
|
106 |
+
torch.nn.init.zeros_(module.in_proj_bias)
|
107 |
+
if module.bias_k is not None:
|
108 |
+
torch.nn.init.zeros_(module.bias_k)
|
109 |
+
if module.bias_v is not None:
|
110 |
+
torch.nn.init.zeros_(module.bias_v)
|
111 |
+
init_fn_(module.out_proj.weight)
|
112 |
+
if init_div_is_residual is not False and getattr(module.out_proj, '_is_residual', False):
|
113 |
+
with torch.no_grad():
|
114 |
+
module.out_proj.weight.div_(div_is_residual)
|
115 |
+
if module.out_proj.bias is not None:
|
116 |
+
torch.nn.init.zeros_(module.out_proj.bias)
|
117 |
+
else:
|
118 |
+
for _ in module.parameters(recurse=False):
|
119 |
+
raise NotImplementedError(f'{module.__class__.__name__} parameters are not initialized by param_init_fn.')
|
120 |
+
|
121 |
+
def _normal_init_(std, mean=0.0):
|
122 |
+
return partial(torch.nn.init.normal_, mean=mean, std=std)
|
123 |
+
|
124 |
+
def _normal_param_init_fn_(module: nn.Module, std: float, n_layers: int, d_model: Optional[int]=None, init_div_is_residual: Union[int, float, str, bool]=True, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]]=None, verbose: int=0, **kwargs):
|
125 |
+
del kwargs
|
126 |
+
init_fn_ = _normal_init_(std=std)
|
127 |
+
if verbose > 1:
|
128 |
+
warnings.warn(f'Using torch.nn.init.normal_ init fn mean=0.0, std={std}')
|
129 |
+
generic_param_init_fn_(module=module, init_fn_=init_fn_, d_model=d_model, n_layers=n_layers, init_div_is_residual=init_div_is_residual, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim, verbose=verbose)
|
130 |
+
|
131 |
+
def baseline_param_init_fn_(module: nn.Module, init_std: float, n_layers: int, d_model: Optional[int]=None, init_div_is_residual: Union[int, float, str, bool]=True, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]]=None, verbose: int=0, **kwargs):
|
132 |
+
del kwargs
|
133 |
+
if init_std is None:
|
134 |
+
raise ValueError("You must set model.init_config['init_std'] to a float value to use the default initialization scheme.")
|
135 |
+
_normal_param_init_fn_(module=module, std=init_std, d_model=d_model, n_layers=n_layers, init_div_is_residual=init_div_is_residual, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim, verbose=verbose)
|
136 |
+
|
137 |
+
def small_param_init_fn_(module: nn.Module, n_layers: int, d_model: int, init_div_is_residual: Union[int, float, str, bool]=True, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]]=None, verbose: int=0, **kwargs):
|
138 |
+
del kwargs
|
139 |
+
std = math.sqrt(2 / (5 * d_model))
|
140 |
+
_normal_param_init_fn_(module=module, std=std, d_model=d_model, n_layers=n_layers, init_div_is_residual=init_div_is_residual, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim, verbose=verbose)
|
141 |
+
|
142 |
+
def neox_param_init_fn_(module: nn.Module, n_layers: int, d_model: int, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]]=None, verbose: int=0, **kwargs):
|
143 |
+
"""From section 2.3.1 of GPT-NeoX-20B:
|
144 |
+
|
145 |
+
An Open-Source AutoregressiveLanguage Model — Black et. al. (2022)
|
146 |
+
see https://github.com/EleutherAI/gpt-neox/blob/9610391ab319403cef079b438edd016a2443af54/megatron/model/init_functions.py#L151
|
147 |
+
and https://github.com/EleutherAI/gpt-neox/blob/main/megatron/model/transformer.py
|
148 |
+
"""
|
149 |
+
del kwargs
|
150 |
+
residual_div = n_layers / math.sqrt(10)
|
151 |
+
if verbose > 1:
|
152 |
+
warnings.warn(f'setting init_div_is_residual to {residual_div}')
|
153 |
+
small_param_init_fn_(module=module, d_model=d_model, n_layers=n_layers, init_div_is_residual=residual_div, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim, verbose=verbose)
|
154 |
+
|
155 |
+
def kaiming_uniform_param_init_fn_(module: nn.Module, n_layers: int, d_model: Optional[int]=None, init_div_is_residual: Union[int, float, str, bool]=True, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]]=None, init_gain: float=0, fan_mode: str='fan_in', init_nonlinearity: str='leaky_relu', verbose: int=0, **kwargs):
|
156 |
+
del kwargs
|
157 |
+
if verbose > 1:
|
158 |
+
warnings.warn(f'Using nn.init.kaiming_uniform_ init fn with parameters: ' + f'a={init_gain}, mode={fan_mode}, nonlinearity={init_nonlinearity}')
|
159 |
+
kaiming_uniform_ = partial(nn.init.kaiming_uniform_, a=init_gain, mode=fan_mode, nonlinearity=init_nonlinearity)
|
160 |
+
generic_param_init_fn_(module=module, init_fn_=kaiming_uniform_, d_model=d_model, n_layers=n_layers, init_div_is_residual=init_div_is_residual, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim, verbose=verbose)
|
161 |
+
|
162 |
+
def kaiming_normal_param_init_fn_(module: nn.Module, n_layers: int, d_model: Optional[int]=None, init_div_is_residual: Union[int, float, str, bool]=True, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]]=None, init_gain: float=0, fan_mode: str='fan_in', init_nonlinearity: str='leaky_relu', verbose: int=0, **kwargs):
|
163 |
+
del kwargs
|
164 |
+
if verbose > 1:
|
165 |
+
warnings.warn(f'Using nn.init.kaiming_normal_ init fn with parameters: ' + f'a={init_gain}, mode={fan_mode}, nonlinearity={init_nonlinearity}')
|
166 |
+
kaiming_normal_ = partial(torch.nn.init.kaiming_normal_, a=init_gain, mode=fan_mode, nonlinearity=init_nonlinearity)
|
167 |
+
generic_param_init_fn_(module=module, init_fn_=kaiming_normal_, d_model=d_model, n_layers=n_layers, init_div_is_residual=init_div_is_residual, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim, verbose=verbose)
|
168 |
+
|
169 |
+
def xavier_uniform_param_init_fn_(module: nn.Module, n_layers: int, d_model: Optional[int]=None, init_div_is_residual: Union[int, float, str, bool]=True, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]]=None, init_gain: float=0, verbose: int=0, **kwargs):
|
170 |
+
del kwargs
|
171 |
+
xavier_uniform_ = partial(torch.nn.init.xavier_uniform_, gain=init_gain)
|
172 |
+
if verbose > 1:
|
173 |
+
warnings.warn(f'Using torch.nn.init.xavier_uniform_ init fn with parameters: ' + f'gain={init_gain}')
|
174 |
+
generic_param_init_fn_(module=module, init_fn_=xavier_uniform_, d_model=d_model, n_layers=n_layers, init_div_is_residual=init_div_is_residual, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim, verbose=verbose)
|
175 |
+
|
176 |
+
def xavier_normal_param_init_fn_(module: nn.Module, n_layers: int, d_model: Optional[int]=None, init_div_is_residual: Union[int, float, str, bool]=True, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]]=None, init_gain: float=0, verbose: int=0, **kwargs):
|
177 |
+
xavier_normal_ = partial(torch.nn.init.xavier_normal_, gain=init_gain)
|
178 |
+
if verbose > 1:
|
179 |
+
warnings.warn(f'Using torch.nn.init.xavier_normal_ init fn with parameters: ' + f'gain={init_gain}')
|
180 |
+
generic_param_init_fn_(module=module, init_fn_=xavier_normal_, d_model=d_model, n_layers=n_layers, init_div_is_residual=init_div_is_residual, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim, verbose=verbose)
|
181 |
+
MODEL_INIT_REGISTRY = {'default_': torch_default_param_init_fn_, 'baseline_': baseline_param_init_fn_, 'kaiming_uniform_': kaiming_uniform_param_init_fn_, 'kaiming_normal_': kaiming_normal_param_init_fn_, 'neox_init_': neox_param_init_fn_, 'small_init_': small_param_init_fn_, 'xavier_uniform_': xavier_uniform_param_init_fn_, 'xavier_normal_': xavier_normal_param_init_fn_}
|