|
|
import asyncio |
|
|
import os |
|
|
import json |
|
|
import logging |
|
|
import numpy as np |
|
|
import pickle |
|
|
import gzip |
|
|
from typing import Dict, List, Optional, Any, Tuple |
|
|
from datetime import datetime |
|
|
import uuid |
|
|
import httpx |
|
|
import base64 |
|
|
from dataclasses import dataclass |
|
|
|
|
|
|
|
|
from lightrag import LightRAG, QueryParam |
|
|
from lightrag.utils import EmbeddingFunc |
|
|
from lightrag.kg.shared_storage import initialize_pipeline_status |
|
|
|
|
|
|
|
|
import asyncpg |
|
|
from redis import Redis |
|
|
|
|
|
|
|
|
REQUIRED_ENV_VARS = [ |
|
|
'CLOUDFLARE_API_KEY', |
|
|
'CLOUDFLARE_ACCOUNT_ID', |
|
|
'DATABASE_URL', |
|
|
'BLOB_READ_WRITE_TOKEN', |
|
|
'REDIS_URL', |
|
|
'JWT_SECRET' |
|
|
] |
|
|
|
|
|
|
|
|
class EnvironmentError(Exception): |
|
|
"""Raised when required environment variables are missing""" |
|
|
pass |
|
|
|
|
|
|
|
|
def validate_environment(): |
|
|
"""Validate all required environment variables are present""" |
|
|
missing_vars = [] |
|
|
for var in REQUIRED_ENV_VARS: |
|
|
if not os.getenv(var): |
|
|
missing_vars.append(var) |
|
|
|
|
|
if missing_vars: |
|
|
raise EnvironmentError(f"Missing required environment variables: {', '.join(missing_vars)}") |
|
|
|
|
|
|
|
|
@dataclass |
|
|
class RAGConfig: |
|
|
"""Configuration for RAG instances""" |
|
|
ai_type: str |
|
|
user_id: Optional[str] = None |
|
|
ai_id: Optional[str] = None |
|
|
name: Optional[str] = None |
|
|
description: Optional[str] = None |
|
|
|
|
|
def get_cache_key(self) -> str: |
|
|
"""Generate cache key for this RAG configuration""" |
|
|
return f"rag_{self.ai_type}_{self.user_id or 'system'}_{self.ai_id or 'default'}" |
|
|
|
|
|
|
|
|
class CloudflareWorker: |
|
|
def __init__(self, cloudflare_api_key: str, api_base_url: str, llm_model_name: str, embedding_model_name: str, |
|
|
max_tokens: int = 4080): |
|
|
self.cloudflare_api_key = cloudflare_api_key |
|
|
self.api_base_url = api_base_url |
|
|
self.max_tokens = max_tokens |
|
|
self.logger = logging.getLogger(__name__) |
|
|
self.llm_model_name = llm_model_name |
|
|
self.embedding_model_name = embedding_model_name |
|
|
|
|
|
self.llm_models = [ |
|
|
"@cf/meta/llama-3.1-8b-instruct", |
|
|
"@cf/deepseek-ai/deepseek-r1-distill-qwen-32b", |
|
|
"@cf/mistralai/mistral-small-3.1-24b-instruct", |
|
|
"@cf/meta/llama-4-scout-17b-16e-instruct", |
|
|
"@cf/meta/llama-3.2-11b-vision-instruct", |
|
|
"@cf/meta/llama-3-8b-instruct", |
|
|
"@cf/mistral/mistral-7b-instruct-v0.1", |
|
|
"@cf/meta/llama-2-7b-chat-int8", |
|
|
"@cf/microsoft/phi-2", |
|
|
"@cf/meta/llama-3.2-3b-instruct", |
|
|
"@cf/google/gemma-3-12b-it", |
|
|
"@cf/google/gemma-7b-it", |
|
|
"@cf/qwen/qwen1.5-7b-chat-awq", |
|
|
"@cf/tiiuae/falcon-7b-instruct", |
|
|
"@cf/microsoft/dialoGPT-medium", |
|
|
|
|
|
] |
|
|
|
|
|
|
|
|
self.embedding_models = [ |
|
|
"@cf/baai/bge-large-en-v1.5", |
|
|
"@cf/baai/bge-base-en-v1.5", |
|
|
"@cf/baai/bge-small-en-v1.5", |
|
|
"@cf/baai/bge-m3", |
|
|
] |
|
|
self.current_llm_index = 0 |
|
|
self.current_embedding_index = 0 |
|
|
|
|
|
async def query(self, prompt: str, system_prompt: str = "", **kwargs) -> str: |
|
|
"""Enhanced query with better entity extraction prompting""" |
|
|
|
|
|
|
|
|
if not system_prompt: |
|
|
system_prompt = """You are an expert technical document analyzer. Your main goal is to identify and extract important technical entities, concepts, and objects from specialized documents. Focus on: |
|
|
- Technical terms and concepts |
|
|
- Equipment and devices |
|
|
- Procedures and processes |
|
|
- Standards and requirements |
|
|
- Physical objects and systems |
|
|
Be precise and technical in your analysis.""" |
|
|
|
|
|
filtered_kwargs = {k: v for k, v in kwargs.items() if |
|
|
k not in ['hashing_kv', 'history_messages', 'global_kv', 'text_chunks']} |
|
|
|
|
|
messages = [ |
|
|
{"role": "system", "content": system_prompt}, |
|
|
{"role": "user", "content": prompt[:self.max_tokens]}, |
|
|
] |
|
|
|
|
|
|
|
|
input_data = { |
|
|
"messages": messages, |
|
|
"max_tokens": min(self.max_tokens, 4096), |
|
|
"temperature": 0.2, |
|
|
"top_p": 0.85, |
|
|
**filtered_kwargs |
|
|
} |
|
|
|
|
|
response, new_index = await self._send_request_with_fallback(self.llm_models, self.current_llm_index, |
|
|
input_data) |
|
|
self.current_llm_index = new_index |
|
|
|
|
|
|
|
|
model_used = self.llm_models[new_index] |
|
|
self.logger.info(f"π€ Used model: {model_used}") |
|
|
|
|
|
return response |
|
|
|
|
|
async def _send_request_with_fallback(self, model_list: List[str], current_index: int, input_: dict) -> Tuple[ |
|
|
Any, int]: |
|
|
"""Send request with model fallback""" |
|
|
for i in range(len(model_list)): |
|
|
model_index = (current_index + i) % len(model_list) |
|
|
model_name = model_list[model_index] |
|
|
|
|
|
try: |
|
|
headers = {"Authorization": f"Bearer {self.cloudflare_api_key}"} |
|
|
async with httpx.AsyncClient(timeout=30.0) as client: |
|
|
response = await client.post( |
|
|
f"{self.api_base_url}{model_name}", |
|
|
headers=headers, |
|
|
json=input_ |
|
|
) |
|
|
response.raise_for_status() |
|
|
result = response.json().get("result", {}) |
|
|
|
|
|
if "data" in result: |
|
|
return np.array(result["data"]), model_index |
|
|
elif "response" in result: |
|
|
return result["response"], model_index |
|
|
else: |
|
|
continue |
|
|
|
|
|
except Exception as e: |
|
|
self.logger.warning(f"Model {model_name} failed: {e}") |
|
|
continue |
|
|
|
|
|
raise Exception("All models failed") |
|
|
|
|
|
async def query(self, prompt: str, system_prompt: str = "", **kwargs) -> str: |
|
|
filtered_kwargs = {k: v for k, v in kwargs.items() if |
|
|
k not in ['hashing_kv', 'history_messages', 'global_kv', 'text_chunks']} |
|
|
|
|
|
messages = [ |
|
|
{"role": "system", |
|
|
"content": system_prompt or "You are a helpful AI assistant. Your main goal is to help with the knowledge you have from LightRAG files"}, |
|
|
{"role": "user", "content": prompt[:self.max_tokens]}, |
|
|
] |
|
|
|
|
|
input_data = {"messages": messages, "max_tokens": min(self.max_tokens, 4096), **filtered_kwargs} |
|
|
|
|
|
response, new_index = await self._send_request_with_fallback(self.llm_models, self.current_llm_index, |
|
|
input_data) |
|
|
self.current_llm_index = new_index |
|
|
return response |
|
|
|
|
|
async def embedding_chunk(self, texts: List[str]) -> np.ndarray: |
|
|
truncated_texts = [text[:2000] for text in texts] |
|
|
input_data = {"text": truncated_texts} |
|
|
|
|
|
response, new_index = await self._send_request_with_fallback(self.embedding_models, |
|
|
self.current_embedding_index, input_data) |
|
|
self.current_embedding_index = new_index |
|
|
return response |
|
|
|
|
|
|
|
|
class VercelBlobClient: |
|
|
"""Vercel Blob storage client for RAG state persistence""" |
|
|
|
|
|
def __init__(self, token: str): |
|
|
self.token = token |
|
|
self.logger = logging.getLogger(__name__) |
|
|
|
|
|
async def put(self, filename: str, data: bytes) -> str: |
|
|
"""Upload data to Vercel Blob""" |
|
|
try: |
|
|
async with httpx.AsyncClient(timeout=120.0) as client: |
|
|
response = await client.put( |
|
|
f"https://blob.vercel-storage.com/{filename}", |
|
|
headers={"Authorization": f"Bearer {self.token}"}, |
|
|
content=data |
|
|
) |
|
|
response.raise_for_status() |
|
|
result = response.json() |
|
|
return result.get('url', f"https://blob.vercel-storage.com/{filename}") |
|
|
except Exception as e: |
|
|
self.logger.error(f"Failed to upload to Vercel Blob: {e}") |
|
|
raise |
|
|
|
|
|
async def get(self, url: str) -> bytes: |
|
|
"""Download data from Vercel Blob""" |
|
|
try: |
|
|
async with httpx.AsyncClient(timeout=120.0) as client: |
|
|
response = await client.get(url) |
|
|
response.raise_for_status() |
|
|
return response.content |
|
|
except Exception as e: |
|
|
self.logger.error(f"Failed to download from Vercel Blob: {e}") |
|
|
raise |
|
|
|
|
|
|
|
|
class DatabaseManager: |
|
|
"""Database manager with complete RAG persistence""" |
|
|
|
|
|
def __init__(self, database_url: str, redis_url: str): |
|
|
self.database_url = database_url |
|
|
self.redis_url = redis_url |
|
|
self.pool = None |
|
|
self.redis = None |
|
|
self.logger = logging.getLogger(__name__) |
|
|
|
|
|
async def connect(self): |
|
|
"""Initialize database connections""" |
|
|
try: |
|
|
self.pool = await asyncpg.create_pool( |
|
|
self.database_url, |
|
|
min_size=2, |
|
|
max_size=20, |
|
|
command_timeout=60 |
|
|
) |
|
|
|
|
|
self.redis = Redis.from_url(self.redis_url, decode_responses=True) |
|
|
|
|
|
self.logger.info("Database connections established successfully") |
|
|
|
|
|
await self._create_tables() |
|
|
|
|
|
except Exception as e: |
|
|
self.logger.error(f"Database connection failed: {e}") |
|
|
raise |
|
|
|
|
|
async def _create_tables(self): |
|
|
"""Create necessary tables for RAG persistence""" |
|
|
async with self.pool.acquire() as conn: |
|
|
await conn.execute(""" |
|
|
CREATE TABLE IF NOT EXISTS rag_instances ( |
|
|
id UUID PRIMARY KEY DEFAULT gen_random_uuid(), |
|
|
ai_type VARCHAR(50) NOT NULL, |
|
|
user_id VARCHAR(100), |
|
|
ai_id VARCHAR(100), |
|
|
name VARCHAR(255) NOT NULL, |
|
|
description TEXT, |
|
|
graph_blob_url TEXT, |
|
|
vector_blob_url TEXT, |
|
|
config_blob_url TEXT, |
|
|
total_chunks INTEGER DEFAULT 0, |
|
|
total_tokens INTEGER DEFAULT 0, |
|
|
file_count INTEGER DEFAULT 0, |
|
|
created_at TIMESTAMP DEFAULT NOW(), |
|
|
updated_at TIMESTAMP DEFAULT NOW(), |
|
|
last_accessed_at TIMESTAMP DEFAULT NOW(), |
|
|
status VARCHAR(20) DEFAULT 'active', |
|
|
UNIQUE(ai_type, user_id, ai_id) |
|
|
); |
|
|
|
|
|
CREATE TABLE IF NOT EXISTS knowledge_files ( |
|
|
id UUID PRIMARY KEY DEFAULT gen_random_uuid(), |
|
|
rag_instance_id UUID REFERENCES rag_instances(id) ON DELETE CASCADE, |
|
|
filename VARCHAR(255) NOT NULL, |
|
|
original_filename VARCHAR(255), |
|
|
file_type VARCHAR(50), |
|
|
file_size INTEGER, |
|
|
blob_url TEXT, |
|
|
content_text TEXT, |
|
|
processed_at TIMESTAMP DEFAULT NOW(), |
|
|
processing_status VARCHAR(20) DEFAULT 'processed', |
|
|
token_count INTEGER DEFAULT 0, |
|
|
created_at TIMESTAMP DEFAULT NOW() |
|
|
); |
|
|
|
|
|
CREATE TABLE IF NOT EXISTS conversations ( |
|
|
id UUID PRIMARY KEY DEFAULT gen_random_uuid(), |
|
|
user_id VARCHAR(100) NOT NULL, |
|
|
ai_type VARCHAR(50) NOT NULL, |
|
|
ai_id VARCHAR(100), |
|
|
title VARCHAR(255), |
|
|
created_at TIMESTAMP DEFAULT NOW(), |
|
|
updated_at TIMESTAMP DEFAULT NOW(), |
|
|
is_active BOOLEAN DEFAULT TRUE |
|
|
); |
|
|
|
|
|
CREATE TABLE IF NOT EXISTS conversation_messages ( |
|
|
id UUID PRIMARY KEY DEFAULT gen_random_uuid(), |
|
|
conversation_id UUID REFERENCES conversations(id) ON DELETE CASCADE, |
|
|
role VARCHAR(20) NOT NULL, |
|
|
content TEXT NOT NULL, |
|
|
metadata JSONB DEFAULT '{}', |
|
|
created_at TIMESTAMP DEFAULT NOW() |
|
|
); |
|
|
|
|
|
CREATE TABLE IF NOT EXISTS system_stats ( |
|
|
id VARCHAR(50) PRIMARY KEY DEFAULT gen_random_uuid()::text, |
|
|
total_users INTEGER NOT NULL DEFAULT 0, |
|
|
total_ais INTEGER NOT NULL DEFAULT 0, |
|
|
total_messages INTEGER NOT NULL DEFAULT 0, |
|
|
date TIMESTAMP WITHOUT TIME ZONE NOT NULL DEFAULT NOW() |
|
|
); |
|
|
|
|
|
CREATE INDEX IF NOT EXISTS idx_system_stats_date ON system_stats(date DESC); |
|
|
|
|
|
CREATE UNIQUE INDEX IF NOT EXISTS idx_system_stats_date_unique |
|
|
ON system_stats(DATE(date)); |
|
|
|
|
|
-- Insert initial stats if table is empty |
|
|
INSERT INTO system_stats (id, total_users, total_ais, total_messages, date) |
|
|
SELECT 'initial', 0, 0, 0, NOW() |
|
|
WHERE NOT EXISTS (SELECT 1 FROM system_stats); |
|
|
|
|
|
CREATE INDEX IF NOT EXISTS idx_rag_instances_lookup ON rag_instances(ai_type, user_id, ai_id); |
|
|
CREATE INDEX IF NOT EXISTS idx_conversations_user ON conversations(user_id); |
|
|
CREATE INDEX IF NOT EXISTS idx_conversation_messages_conv ON conversation_messages(conversation_id); |
|
|
""") |
|
|
|
|
|
self.logger.info("Database tables created/verified successfully") |
|
|
|
|
|
async def initialize_system_stats(self): |
|
|
"""Initialize system stats with current counts from database""" |
|
|
try: |
|
|
async with self.pool.acquire() as conn: |
|
|
|
|
|
user_count = await conn.fetchval(""" |
|
|
SELECT COUNT(*) FROM users WHERE is_active = true |
|
|
""") or 0 |
|
|
|
|
|
|
|
|
ai_count = await conn.fetchval(""" |
|
|
SELECT COUNT(*) FROM custom_ais WHERE is_active = true |
|
|
""") or 0 |
|
|
|
|
|
|
|
|
message_count = await conn.fetchval(""" |
|
|
SELECT |
|
|
(SELECT COUNT(*) FROM messages) + |
|
|
(SELECT COUNT(*) FROM conversation_messages) |
|
|
""") or 0 |
|
|
|
|
|
|
|
|
today = datetime.now().date() |
|
|
existing_stats = await conn.fetchrow(""" |
|
|
SELECT id FROM system_stats WHERE DATE(date) = $1 |
|
|
""", today) |
|
|
|
|
|
if existing_stats: |
|
|
|
|
|
await conn.execute(""" |
|
|
UPDATE system_stats |
|
|
SET total_users = $1, total_ais = $2, total_messages = $3, date = NOW() |
|
|
WHERE DATE(date) = $4 |
|
|
""", user_count, ai_count, message_count, today) |
|
|
else: |
|
|
|
|
|
await conn.execute(""" |
|
|
INSERT INTO system_stats (id, total_users, total_ais, total_messages, date) |
|
|
VALUES ($1, $2, $3, $4, NOW()) |
|
|
""", f"stats_{today}", user_count, ai_count, message_count) |
|
|
|
|
|
self.logger.info( |
|
|
f"π Initialized system stats: {user_count} users, {ai_count} AIs, {message_count} messages") |
|
|
|
|
|
except Exception as e: |
|
|
self.logger.error(f"Failed to initialize system stats: {e}") |
|
|
|
|
|
async def update_system_stat(self, stat_type: str, increment: int = 1): |
|
|
"""Update a specific system statistic""" |
|
|
try: |
|
|
async with self.pool.acquire() as conn: |
|
|
today = datetime.now().date() |
|
|
|
|
|
|
|
|
column_map = { |
|
|
'users': 'total_users', |
|
|
'ais': 'total_ais', |
|
|
'messages': 'total_messages' |
|
|
} |
|
|
|
|
|
if stat_type not in column_map: |
|
|
self.logger.warning(f"Unknown stat type: {stat_type}") |
|
|
return |
|
|
|
|
|
column_name = column_map[stat_type] |
|
|
|
|
|
|
|
|
await conn.execute(f""" |
|
|
INSERT INTO system_stats (id, total_users, total_ais, total_messages, date) |
|
|
VALUES ($1, |
|
|
CASE WHEN '{column_name}' = 'total_users' THEN $2 ELSE 0 END, |
|
|
CASE WHEN '{column_name}' = 'total_ais' THEN $2 ELSE 0 END, |
|
|
CASE WHEN '{column_name}' = 'total_messages' THEN $2 ELSE 0 END, |
|
|
NOW()) |
|
|
ON CONFLICT (DATE(date)) DO UPDATE SET |
|
|
{column_name} = system_stats.{column_name} + $2, |
|
|
date = NOW() |
|
|
""", f"stats_{today}", increment) |
|
|
|
|
|
self.logger.debug(f"π Updated {stat_type} by {increment}") |
|
|
|
|
|
except Exception as e: |
|
|
self.logger.error(f"Failed to update {stat_type} stat: {e}") |
|
|
|
|
|
async def get_current_stats(self): |
|
|
"""Get current system statistics""" |
|
|
try: |
|
|
async with self.pool.acquire() as conn: |
|
|
|
|
|
stats_row = await conn.fetchrow(""" |
|
|
SELECT total_users, total_ais, total_messages, date |
|
|
FROM system_stats |
|
|
ORDER BY date DESC |
|
|
LIMIT 1 |
|
|
""") |
|
|
|
|
|
if not stats_row: |
|
|
|
|
|
await self.initialize_system_stats() |
|
|
return await self.get_current_stats() |
|
|
|
|
|
|
|
|
total_characters = await conn.fetchval(""" |
|
|
SELECT COALESCE( |
|
|
(SELECT SUM(LENGTH(content)) FROM messages) + |
|
|
(SELECT SUM(LENGTH(content)) FROM conversation_messages), |
|
|
0 |
|
|
) |
|
|
""") |
|
|
|
|
|
return { |
|
|
'total_users': stats_row['total_users'], |
|
|
'total_ais': stats_row['total_ais'], |
|
|
'total_messages': stats_row['total_messages'], |
|
|
'lines_of_code_generated': total_characters or 0, |
|
|
'last_updated': stats_row['date'].isoformat() |
|
|
} |
|
|
|
|
|
except Exception as e: |
|
|
self.logger.error(f"Failed to get current stats: {e}") |
|
|
|
|
|
return { |
|
|
'total_users': 0, |
|
|
'total_ais': 0, |
|
|
'total_messages': 0, |
|
|
'lines_of_code_generated': 0, |
|
|
'last_updated': datetime.now().isoformat() |
|
|
} |
|
|
|
|
|
async def save_rag_instance(self, config: RAGConfig, graph_blob_url: str, vector_blob_url: str, |
|
|
config_blob_url: str, metadata: Dict[str, Any]) -> str: |
|
|
async with self.pool.acquire() as conn: |
|
|
rag_instance_id = await conn.fetchval(""" |
|
|
INSERT INTO rag_instances ( |
|
|
ai_type, user_id, ai_id, name, description, |
|
|
graph_blob_url, vector_blob_url, config_blob_url, |
|
|
total_chunks, total_tokens, file_count, |
|
|
created_at, updated_at, last_accessed_at |
|
|
) VALUES ($1, $2, $3, $4, $5, $6, $7, $8, $9, $10, $11, NOW(), NOW(), NOW()) |
|
|
ON CONFLICT (ai_type, user_id, ai_id) DO UPDATE SET |
|
|
graph_blob_url = EXCLUDED.graph_blob_url, |
|
|
vector_blob_url = EXCLUDED.vector_blob_url, |
|
|
config_blob_url = EXCLUDED.config_blob_url, |
|
|
total_chunks = EXCLUDED.total_chunks, |
|
|
total_tokens = EXCLUDED.total_tokens, |
|
|
file_count = EXCLUDED.file_count, |
|
|
updated_at = NOW() |
|
|
RETURNING id; |
|
|
""", |
|
|
config.ai_type, config.user_id, config.ai_id, |
|
|
config.name, config.description, |
|
|
graph_blob_url, vector_blob_url, config_blob_url, |
|
|
metadata.get('total_chunks', 0), |
|
|
metadata.get('total_tokens', 0), |
|
|
metadata.get('file_count', 0) |
|
|
) |
|
|
|
|
|
return str(rag_instance_id) |
|
|
|
|
|
async def cleanup_duplicate_rag_instances(self, ai_type: str, keep_latest: bool = True): |
|
|
"""Clean up duplicate RAG instances, keeping only the latest one""" |
|
|
async with self.pool.acquire() as conn: |
|
|
if keep_latest: |
|
|
|
|
|
await conn.execute(""" |
|
|
UPDATE rag_instances |
|
|
SET status = 'duplicate_cleanup' |
|
|
WHERE ai_type = $1 AND user_id IS NULL AND ai_id IS NULL |
|
|
AND status = 'active' |
|
|
AND id NOT IN ( |
|
|
SELECT id FROM rag_instances |
|
|
WHERE ai_type = $1 AND user_id IS NULL AND ai_id IS NULL AND status = 'active' |
|
|
ORDER BY created_at DESC LIMIT 1 |
|
|
) |
|
|
""", ai_type) |
|
|
|
|
|
count = await conn.fetchval(""" |
|
|
SELECT COUNT(*) FROM rag_instances |
|
|
WHERE ai_type = $1 AND status = 'duplicate_cleanup' |
|
|
""", ai_type) |
|
|
|
|
|
self.logger.info(f"π§Ή Cleaned up {count} duplicate {ai_type} RAG instances") |
|
|
|
|
|
|
|
|
active_instance = await conn.fetchrow(""" |
|
|
SELECT id, name, created_at FROM rag_instances |
|
|
WHERE ai_type = $1 AND user_id IS NULL AND ai_id IS NULL AND status = 'active' |
|
|
ORDER BY created_at DESC LIMIT 1 |
|
|
""", ai_type) |
|
|
|
|
|
if active_instance: |
|
|
self.logger.info(f"β
Active {ai_type} RAG: {active_instance['name']} (ID: {active_instance['id']})") |
|
|
|
|
|
return active_instance |
|
|
|
|
|
async def get_rag_instance(self, config: RAGConfig) -> Optional[Dict[str, Any]]: |
|
|
"""Get RAG instance from database with FIXED cache key matching""" |
|
|
async with self.pool.acquire() as conn: |
|
|
|
|
|
if config.user_id is None and config.ai_id is None: |
|
|
|
|
|
result = await conn.fetchrow(""" |
|
|
SELECT id, ai_type, user_id, ai_id, name, description, |
|
|
graph_blob_url, vector_blob_url, config_blob_url, |
|
|
total_chunks, total_tokens, file_count, |
|
|
created_at, updated_at, last_accessed_at, status |
|
|
FROM rag_instances |
|
|
WHERE ai_type = $1 AND user_id IS NULL AND ai_id IS NULL AND status = 'active' |
|
|
ORDER BY created_at DESC |
|
|
LIMIT 1 |
|
|
""", config.ai_type) |
|
|
elif config.user_id is not None and config.ai_id is None: |
|
|
|
|
|
result = await conn.fetchrow(""" |
|
|
SELECT id, ai_type, user_id, ai_id, name, description, |
|
|
graph_blob_url, vector_blob_url, config_blob_url, |
|
|
total_chunks, total_tokens, file_count, |
|
|
created_at, updated_at, last_accessed_at, status |
|
|
FROM rag_instances |
|
|
WHERE ai_type = $1 AND user_id = $2 AND ai_id IS NULL AND status = 'active' |
|
|
ORDER BY created_at DESC |
|
|
LIMIT 1 |
|
|
""", config.ai_type, config.user_id) |
|
|
else: |
|
|
|
|
|
result = await conn.fetchrow(""" |
|
|
SELECT id, ai_type, user_id, ai_id, name, description, |
|
|
graph_blob_url, vector_blob_url, config_blob_url, |
|
|
total_chunks, total_tokens, file_count, |
|
|
created_at, updated_at, last_accessed_at, status |
|
|
FROM rag_instances |
|
|
WHERE ai_type = $1 AND user_id = $2 AND ai_id = $3 AND status = 'active' |
|
|
ORDER BY created_at DESC |
|
|
LIMIT 1 |
|
|
""", config.ai_type, config.user_id, config.ai_id) |
|
|
|
|
|
if result: |
|
|
|
|
|
await conn.execute(""" |
|
|
UPDATE rag_instances SET last_accessed_at = NOW() WHERE id = $1 |
|
|
""", result['id']) |
|
|
|
|
|
self.logger.info(f"π― Database lookup SUCCESS: Found {result['name']} (ID: {result['id']})") |
|
|
return dict(result) |
|
|
|
|
|
self.logger.info( |
|
|
f"π Database lookup: No RAG found for ai_type='{config.ai_type}', user_id={config.user_id}, ai_id={config.ai_id}") |
|
|
return None |
|
|
|
|
|
async def save_conversation_message( |
|
|
self, |
|
|
conversation_id: str, |
|
|
role: str, |
|
|
content: str, |
|
|
metadata: Optional[Dict[str, Any]] = None |
|
|
) -> str: |
|
|
"""Save conversation message to database""" |
|
|
async with self.pool.acquire() as conn: |
|
|
await conn.execute(""" |
|
|
INSERT INTO conversations (id, user_id, ai_type, ai_id, title) |
|
|
VALUES ($1, $2, $3, $4, $5) |
|
|
ON CONFLICT (id) DO NOTHING |
|
|
""", conversation_id, |
|
|
metadata.get('user_id', 'anonymous'), |
|
|
metadata.get('ai_type', 'unknown'), |
|
|
metadata.get('ai_id'), |
|
|
metadata.get('title', 'New Conversation') |
|
|
) |
|
|
|
|
|
message_id = await conn.fetchval(""" |
|
|
INSERT INTO conversation_messages (conversation_id, role, content, metadata) |
|
|
VALUES ($1, $2, $3, $4) |
|
|
RETURNING id |
|
|
""", conversation_id, role, content, json.dumps(metadata or {})) |
|
|
|
|
|
return str(message_id) |
|
|
|
|
|
async def get_conversation_messages( |
|
|
self, |
|
|
conversation_id: str, |
|
|
limit: int = 50 |
|
|
) -> List[Dict[str, Any]]: |
|
|
"""Get conversation messages from database""" |
|
|
async with self.pool.acquire() as conn: |
|
|
messages = await conn.fetch(""" |
|
|
SELECT id, role, content, metadata, created_at |
|
|
FROM conversation_messages |
|
|
WHERE conversation_id = $1 |
|
|
ORDER BY created_at DESC |
|
|
LIMIT $2 |
|
|
""", conversation_id, limit) |
|
|
|
|
|
return [dict(msg) for msg in reversed(messages)] |
|
|
|
|
|
async def close(self): |
|
|
"""Close database connections""" |
|
|
if self.pool: |
|
|
await self.pool.close() |
|
|
if self.redis: |
|
|
self.redis.close() |
|
|
|
|
|
|
|
|
class PersistentLightRAGManager: |
|
|
""" |
|
|
Complete LightRAG manager with Vercel-only persistence |
|
|
Zero dependency on HuggingFace ephemeral storage |
|
|
""" |
|
|
|
|
|
def __init__( |
|
|
self, |
|
|
cloudflare_worker: CloudflareWorker, |
|
|
database_manager: DatabaseManager, |
|
|
blob_client: VercelBlobClient |
|
|
): |
|
|
self.cloudflare_worker = cloudflare_worker |
|
|
self.db = database_manager |
|
|
self.blob_client = blob_client |
|
|
self.rag_instances: Dict[str, LightRAG] = {} |
|
|
self.processing_locks: Dict[str, asyncio.Lock] = {} |
|
|
self.conversation_memory: Dict[str, List[Dict[str, Any]]] = {} |
|
|
self.logger = logging.getLogger(__name__) |
|
|
|
|
|
async def get_or_create_rag_instance(self, ai_type: str, user_id: Optional[str] = None, ai_id: Optional[str] = None, |
|
|
name: Optional[str] = None, description: Optional[str] = None) -> LightRAG: |
|
|
config = RAGConfig(ai_type=ai_type, user_id=user_id, ai_id=ai_id, name=name or f"{ai_type} AI", |
|
|
description=description) |
|
|
cache_key = config.get_cache_key() |
|
|
|
|
|
if cache_key in self.rag_instances: |
|
|
self.logger.info(f"Returning cached RAG instance: {cache_key}") |
|
|
return self.rag_instances[cache_key] |
|
|
|
|
|
if cache_key not in self.processing_locks: |
|
|
self.processing_locks[cache_key] = asyncio.Lock() |
|
|
|
|
|
async with self.processing_locks[cache_key]: |
|
|
if cache_key in self.rag_instances: |
|
|
return self.rag_instances[cache_key] |
|
|
|
|
|
try: |
|
|
self.logger.info(f"Checking for existing RAG instance: {cache_key}") |
|
|
instance_data = await self.db.get_rag_instance(config) |
|
|
|
|
|
if instance_data: |
|
|
self.logger.info( |
|
|
f"Found existing RAG instance: {instance_data['name']} (ID: {instance_data['id']})") |
|
|
|
|
|
async with self.db.pool.acquire() as conn: |
|
|
storage_check = await conn.fetchrow(""" |
|
|
SELECT filename, file_size, processing_status, token_count |
|
|
FROM knowledge_files |
|
|
WHERE rag_instance_id = $1 AND filename = 'lightrag_storage.json' |
|
|
LIMIT 1 |
|
|
""", instance_data['id']) |
|
|
|
|
|
if storage_check: |
|
|
self.logger.info( |
|
|
f"Found storage data: {storage_check['file_size']} bytes, {storage_check['token_count']} tokens, status: {storage_check['processing_status']}") |
|
|
|
|
|
rag_instance = await self._load_from_database(config) |
|
|
if rag_instance: |
|
|
self.rag_instances[cache_key] = rag_instance |
|
|
self.logger.info(f"Successfully loaded existing RAG from database: {cache_key}") |
|
|
return rag_instance |
|
|
else: |
|
|
self.logger.error(f"Failed to load RAG from database despite having storage data") |
|
|
else: |
|
|
self.logger.warning(f"RAG instance exists but no storage data found") |
|
|
else: |
|
|
self.logger.info(f"No existing RAG instance found in database for: {cache_key}") |
|
|
|
|
|
except Exception as e: |
|
|
self.logger.error(f"Error checking/loading existing RAG instance: {e}") |
|
|
|
|
|
self.logger.info(f"Creating new RAG instance: {cache_key}") |
|
|
rag_instance = await self._create_new_rag_instance(config) |
|
|
await self._save_to_database(config, rag_instance) |
|
|
self.rag_instances[cache_key] = rag_instance |
|
|
return rag_instance |
|
|
|
|
|
async def _create_new_rag_instance(self, config: RAGConfig) -> LightRAG: |
|
|
"""Create new RAG instance with CORRECT LightRAG 1.3.7 configuration""" |
|
|
|
|
|
working_dir = f"/tmp/rag_memory_{config.get_cache_key()}_{uuid.uuid4()}" |
|
|
os.makedirs(working_dir, exist_ok=True) |
|
|
|
|
|
|
|
|
rag = LightRAG( |
|
|
working_dir=working_dir, |
|
|
max_parallel_insert=1, |
|
|
llm_model_func=self.cloudflare_worker.query, |
|
|
llm_model_name=self.cloudflare_worker.llm_models[0], |
|
|
llm_model_max_token_size=4080, |
|
|
embedding_func=EmbeddingFunc( |
|
|
embedding_dim=1024, |
|
|
max_token_size=2048, |
|
|
func=self.cloudflare_worker.embedding_chunk, |
|
|
), |
|
|
graph_storage="NetworkXStorage", |
|
|
vector_storage="NanoVectorDBStorage", |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
) |
|
|
|
|
|
|
|
|
await rag.initialize_storages() |
|
|
await initialize_pipeline_status() |
|
|
|
|
|
self.logger.info(f"β
Initialized LightRAG 1.3.7 with working directory: {working_dir}") |
|
|
|
|
|
|
|
|
self.logger.info(f"π§ LightRAG Configuration:") |
|
|
self.logger.info(f" - Working dir: {rag.working_dir}") |
|
|
self.logger.info(f" - LLM model: {rag.llm_model_name}") |
|
|
self.logger.info(f" - Graph storage: {type(rag.graph_storage).__name__}") |
|
|
self.logger.info(f" - Vector storage: {type(rag.vector_storage).__name__}") |
|
|
|
|
|
|
|
|
if not hasattr(rag, 'pipeline_status') or rag.pipeline_status is None: |
|
|
rag.pipeline_status = {"history_messages": []} |
|
|
elif "history_messages" not in rag.pipeline_status: |
|
|
rag.pipeline_status["history_messages"] = [] |
|
|
|
|
|
self.logger.info(f"β
Pipeline status initialized for {config.get_cache_key()}") |
|
|
|
|
|
|
|
|
if config.ai_type == "fire-safety": |
|
|
self.logger.info(f"π₯ Loading fire safety knowledge for {config.get_cache_key()}") |
|
|
success = await self._load_fire_safety_knowledge(rag) |
|
|
|
|
|
if success: |
|
|
|
|
|
self.logger.info("β³ Waiting for entity extraction to complete...") |
|
|
await asyncio.sleep(10) |
|
|
|
|
|
|
|
|
await self._check_storage_contents(rag) |
|
|
else: |
|
|
self.logger.warning("β οΈ Fire safety knowledge loading reported failure") |
|
|
|
|
|
return rag |
|
|
|
|
|
async def _check_storage_contents(self, rag: LightRAG): |
|
|
"""Check what was actually stored after document insertion""" |
|
|
|
|
|
try: |
|
|
self.logger.info("π Checking storage contents after insertion...") |
|
|
|
|
|
|
|
|
storage_files = { |
|
|
'vdb_entities.json': 'entities', |
|
|
'vdb_chunks.json': 'chunks', |
|
|
'vdb_relationships.json': 'relationships' |
|
|
} |
|
|
|
|
|
total_items = 0 |
|
|
|
|
|
for filename, storage_type in storage_files.items(): |
|
|
file_path = f"{rag.working_dir}/{filename}" |
|
|
|
|
|
if os.path.exists(file_path): |
|
|
try: |
|
|
file_size = os.path.getsize(file_path) |
|
|
|
|
|
with open(file_path, 'r') as f: |
|
|
data = json.load(f) |
|
|
|
|
|
item_count = len(data.get('data', [])) |
|
|
has_matrix = bool(data.get('matrix', '')) |
|
|
|
|
|
total_items += item_count |
|
|
|
|
|
if item_count > 0: |
|
|
self.logger.info( |
|
|
f"β
{storage_type}: {item_count} items, {file_size} bytes, matrix: {has_matrix}") |
|
|
|
|
|
|
|
|
if item_count > 0 and len(data['data']) > 0: |
|
|
sample_item = data['data'][0] |
|
|
if isinstance(sample_item, dict): |
|
|
sample_keys = list(sample_item.keys())[:5] |
|
|
self.logger.info(f" Sample item keys: {sample_keys}") |
|
|
else: |
|
|
self.logger.info(f" Sample item type: {type(sample_item)}") |
|
|
else: |
|
|
self.logger.warning(f"β οΈ {storage_type}: EMPTY ({file_size} bytes)") |
|
|
|
|
|
except Exception as e: |
|
|
self.logger.error(f"β Failed to read {filename}: {e}") |
|
|
else: |
|
|
self.logger.warning(f"β οΈ {filename} doesn't exist") |
|
|
|
|
|
self.logger.info(f"π Total items across all storage: {total_items}") |
|
|
|
|
|
|
|
|
if total_items > 0: |
|
|
await self._test_entity_extraction_quality(rag) |
|
|
|
|
|
except Exception as e: |
|
|
self.logger.error(f"β Storage content check failed: {e}") |
|
|
|
|
|
async def _test_entity_extraction_quality(self, rag: LightRAG): |
|
|
"""Test the quality of entity extraction""" |
|
|
|
|
|
try: |
|
|
self.logger.info("π§ͺ Testing entity extraction quality...") |
|
|
|
|
|
|
|
|
entities_file = f"{rag.working_dir}/vdb_entities.json" |
|
|
|
|
|
if os.path.exists(entities_file): |
|
|
with open(entities_file, 'r') as f: |
|
|
entities_data = json.load(f) |
|
|
|
|
|
entities_count = len(entities_data.get('data', [])) |
|
|
|
|
|
if entities_count > 0: |
|
|
self.logger.info(f"β
Found {entities_count} entities") |
|
|
|
|
|
|
|
|
for i, entity in enumerate(entities_data['data'][:3]): |
|
|
if isinstance(entity, dict): |
|
|
entity_name = entity.get('content', entity.get('name', str(entity))) |
|
|
self.logger.info(f" Entity {i + 1}: {entity_name}") |
|
|
|
|
|
return True |
|
|
else: |
|
|
self.logger.warning("β οΈ No entities found - this will break HYBRID mode") |
|
|
return False |
|
|
else: |
|
|
self.logger.warning("β οΈ Entities file doesn't exist") |
|
|
return False |
|
|
|
|
|
except Exception as e: |
|
|
self.logger.error(f"β Entity extraction test failed: {e}") |
|
|
return False |
|
|
|
|
|
async def debug_entity_extraction(self, rag: LightRAG): |
|
|
"""Debug why entities aren't being extracted""" |
|
|
|
|
|
try: |
|
|
self.logger.info("π Debugging entity extraction process...") |
|
|
|
|
|
|
|
|
test_content = """ |
|
|
Fire safety regulations require that all commercial buildings have fire extinguishers. |
|
|
Emergency exits must be clearly marked with illuminated signs. |
|
|
Sprinkler systems are mandatory in buildings over 15,000 square feet. |
|
|
""" |
|
|
|
|
|
|
|
|
try: |
|
|
|
|
|
await rag.ainsert(test_content) |
|
|
|
|
|
|
|
|
await asyncio.sleep(3) |
|
|
|
|
|
|
|
|
entities_file = f"{rag.working_dir}/vdb_entities.json" |
|
|
relationships_file = f"{rag.working_dir}/vdb_relationships.json" |
|
|
|
|
|
for file_path in [entities_file, relationships_file]: |
|
|
if os.path.exists(file_path): |
|
|
with open(file_path, 'r') as f: |
|
|
data = json.load(f) |
|
|
filename = os.path.basename(file_path) |
|
|
item_count = len(data.get('data', [])) |
|
|
|
|
|
self.logger.info(f"π {filename}: {item_count} items") |
|
|
|
|
|
if item_count > 0: |
|
|
|
|
|
sample = data['data'][0] |
|
|
self.logger.info(f"π Sample {filename} item: {sample}") |
|
|
else: |
|
|
self.logger.warning(f"β οΈ {filename} is still empty after insertion") |
|
|
else: |
|
|
self.logger.warning(f"β οΈ {file_path} doesn't exist") |
|
|
|
|
|
except Exception as e: |
|
|
self.logger.error(f"β Entity extraction test failed: {e}") |
|
|
|
|
|
|
|
|
self.logger.info(f"π§ LightRAG config:") |
|
|
self.logger.info(f" - Working dir: {rag.working_dir}") |
|
|
self.logger.info(f" - LLM model: {getattr(rag, 'llm_model_name', 'unknown')}") |
|
|
self.logger.info(f" - Graph storage: {type(rag.graph_storage).__name__}") |
|
|
self.logger.info(f" - Vector storage: {type(rag.vector_storage).__name__}") |
|
|
|
|
|
|
|
|
if hasattr(rag, 'enable_entity_extraction'): |
|
|
self.logger.info(f" - Entity extraction enabled: {rag.enable_entity_extraction}") |
|
|
|
|
|
return True |
|
|
|
|
|
except Exception as e: |
|
|
self.logger.error(f"β Debug entity extraction failed: {e}") |
|
|
return False |
|
|
|
|
|
async def validate_extracted_entities(self, rag: LightRAG, original_content: str) -> bool: |
|
|
"""Validate that extracted entities actually exist in the source content""" |
|
|
|
|
|
try: |
|
|
entities_file = f"{rag.working_dir}/vdb_entities.json" |
|
|
if not os.path.exists(entities_file): |
|
|
return True |
|
|
|
|
|
with open(entities_file, 'r') as f: |
|
|
entities_data = json.load(f) |
|
|
|
|
|
entities = entities_data.get('data', []) |
|
|
invalid_entities = [] |
|
|
valid_entities = [] |
|
|
|
|
|
self.logger.info(f"π Validating {len(entities)} extracted entities against source content...") |
|
|
|
|
|
for entity in entities: |
|
|
if isinstance(entity, dict): |
|
|
entity_name = entity.get('entity_name', '').strip() |
|
|
|
|
|
|
|
|
if not entity_name or entity_name in ['<entity_name>', '', 'Unknown']: |
|
|
invalid_entities.append(f"Empty/placeholder: '{entity_name}'") |
|
|
continue |
|
|
|
|
|
|
|
|
if entity_name.lower() in original_content.lower(): |
|
|
valid_entities.append(entity_name) |
|
|
self.logger.info(f" β
Valid entity: '{entity_name}'") |
|
|
else: |
|
|
invalid_entities.append(f"Not found in content: '{entity_name}'") |
|
|
self.logger.warning(f" β INVALID entity: '{entity_name}' - NOT FOUND in source content!") |
|
|
|
|
|
self.logger.info(f"π Entity validation results:") |
|
|
self.logger.info(f" β
Valid entities: {len(valid_entities)}") |
|
|
self.logger.info(f" β Invalid entities: {len(invalid_entities)}") |
|
|
|
|
|
if invalid_entities: |
|
|
self.logger.error(f"π¨ ENTITY HALLUCINATION DETECTED!") |
|
|
for invalid in invalid_entities[:5]: |
|
|
self.logger.error(f" {invalid}") |
|
|
|
|
|
if len(invalid_entities) > 5: |
|
|
self.logger.error(f" ... and {len(invalid_entities) - 5} more invalid entities") |
|
|
|
|
|
return False |
|
|
|
|
|
return True |
|
|
|
|
|
except Exception as e: |
|
|
self.logger.error(f"β Entity validation failed: {e}") |
|
|
return False |
|
|
|
|
|
async def clean_hallucinated_entities(self, rag: LightRAG, original_content: str): |
|
|
"""Remove entities that don't exist in the source content""" |
|
|
|
|
|
try: |
|
|
entities_file = f"{rag.working_dir}/vdb_entities.json" |
|
|
if not os.path.exists(entities_file): |
|
|
return |
|
|
|
|
|
with open(entities_file, 'r') as f: |
|
|
entities_data = json.load(f) |
|
|
|
|
|
original_entities = entities_data.get('data', []) |
|
|
cleaned_entities = [] |
|
|
removed_count = 0 |
|
|
|
|
|
self.logger.info(f"π§Ή Cleaning hallucinated entities from {len(original_entities)} total entities...") |
|
|
|
|
|
for entity in original_entities: |
|
|
if isinstance(entity, dict): |
|
|
entity_name = entity.get('entity_name', '').strip() |
|
|
|
|
|
|
|
|
if not entity_name or entity_name in ['<entity_name>', '', 'Unknown']: |
|
|
removed_count += 1 |
|
|
continue |
|
|
|
|
|
|
|
|
if entity_name.lower() not in original_content.lower(): |
|
|
self.logger.warning(f" ποΈ Removing hallucinated entity: '{entity_name}'") |
|
|
removed_count += 1 |
|
|
continue |
|
|
|
|
|
|
|
|
cleaned_entities.append(entity) |
|
|
|
|
|
|
|
|
entities_data['data'] = cleaned_entities |
|
|
|
|
|
with open(entities_file, 'w') as f: |
|
|
json.dump(entities_data, f) |
|
|
|
|
|
self.logger.info(f"β
Entity cleaning complete:") |
|
|
self.logger.info(f" π Original entities: {len(original_entities)}") |
|
|
self.logger.info(f" ποΈ Removed: {removed_count}") |
|
|
self.logger.info(f" β
Remaining: {len(cleaned_entities)}") |
|
|
|
|
|
except Exception as e: |
|
|
self.logger.error(f"β Entity cleaning failed: {e}") |
|
|
|
|
|
async def _load_fire_safety_knowledge(self, rag: LightRAG): |
|
|
"""Load fire safety knowledge with FIXED insertion process""" |
|
|
|
|
|
self.logger.info(f"π₯ Loading fire safety knowledge for {rag.working_dir}") |
|
|
|
|
|
|
|
|
base_knowledge = """ |
|
|
FIRE SAFETY REGULATIONS AND BUILDING CODES |
|
|
|
|
|
1. Emergency Exit Requirements: |
|
|
- All buildings must have at least two exits on each floor |
|
|
- Maximum travel distance to exit: 75 feet in unsprinklered buildings, 100 feet in sprinklered buildings |
|
|
- Exit doors must swing in direction of egress travel |
|
|
- All exits must be clearly marked with illuminated exit signs |
|
|
- Exit routes must be free of obstructions at all times |
|
|
- Minimum width for exits: 32 inches for single doors, 64 inches for double doors |
|
|
|
|
|
2. Fire Extinguisher Requirements: |
|
|
- Type A: For ordinary combustible materials (wood, paper, cloth, rubber, plastic) |
|
|
- Type B: For flammable and combustible liquids (gasoline, oil, paint, grease) |
|
|
- Type C: For energized electrical equipment (motors, generators, switches) |
|
|
- Type D: For combustible metals (magnesium, titanium, zirconium, lithium) |
|
|
- Type K: For cooking oils and fats in commercial kitchen equipment |
|
|
- Distribution: Maximum travel distance of 75 feet to nearest extinguisher |
|
|
- Inspection: Monthly visual inspections and annual professional service |
|
|
|
|
|
3. Fire Detection and Alarm Systems: |
|
|
- Smoke detectors required in all sleeping areas and hallways |
|
|
- Heat detectors required in areas where smoke detectors unsuitable |
|
|
- Manual fire alarm pull stations required near all exits |
|
|
- Central monitoring systems required in commercial buildings over 10,000 sq ft |
|
|
- Backup power systems required for all alarm components |
|
|
- Testing schedule: Monthly for batteries, annually for full system |
|
|
|
|
|
4. Sprinkler System Requirements: |
|
|
- Required in all buildings over 3 stories or 15,000 sq ft |
|
|
- Wet pipe systems: Most common, water-filled pipes |
|
|
- Dry pipe systems: For areas subject to freezing temperatures |
|
|
- Deluge systems: For high-hazard areas with rapid fire spread potential |
|
|
- Inspection: Quarterly for valves, annually for full system testing |
|
|
""" |
|
|
|
|
|
all_content = [base_knowledge] |
|
|
|
|
|
book_files = ['/app/book.pdf', '/app/book.txt'] |
|
|
|
|
|
for file_path in book_files: |
|
|
if os.path.exists(file_path): |
|
|
try: |
|
|
if file_path.endswith('.pdf'): |
|
|
try: |
|
|
import PyPDF2 |
|
|
with open(file_path, 'rb') as file: |
|
|
pdf_reader = PyPDF2.PdfReader(file) |
|
|
for page_num in range(min(20, len(pdf_reader.pages))): |
|
|
page_text = pdf_reader.pages[page_num].extract_text() |
|
|
if page_text and len(page_text.strip()) > 100: |
|
|
all_content.append( |
|
|
f"PDF Page {page_num + 1}: {page_text[:3000]}") |
|
|
except Exception as e: |
|
|
self.logger.warning(f"PDF processing failed: {e}") |
|
|
continue |
|
|
else: |
|
|
with open(file_path, 'r', encoding='utf-8', errors='ignore') as file: |
|
|
txt_content = file.read() |
|
|
|
|
|
for i in range(0, min(len(txt_content), 60000), 3000): |
|
|
chunk = txt_content[i:i + 3000] |
|
|
if chunk.strip(): |
|
|
all_content.append(f"TXT Section {i // 3000 + 1}: {chunk}") |
|
|
|
|
|
self.logger.info(f"β
Loaded {file_path}") |
|
|
except Exception as e: |
|
|
self.logger.error(f"β Failed to load {file_path}: {e}") |
|
|
|
|
|
self.logger.info(f"π Starting insertion of {len(all_content)} documents") |
|
|
|
|
|
|
|
|
successful_insertions = 0 |
|
|
|
|
|
for i, content in enumerate(all_content): |
|
|
try: |
|
|
self.logger.info(f"π Inserting document {i + 1}/{len(all_content)} ({len(content)} chars)") |
|
|
|
|
|
entities_before = await self._count_entities(rag) |
|
|
|
|
|
|
|
|
insertion_task = asyncio.create_task(rag.ainsert(content)) |
|
|
|
|
|
try: |
|
|
await asyncio.wait_for(insertion_task, timeout=45.0) |
|
|
successful_insertions += 1 |
|
|
self.logger.info(f"β
Document {i + 1} inserted successfully") |
|
|
|
|
|
|
|
|
await asyncio.sleep(2) |
|
|
entities_after = await self._count_entities(rag) |
|
|
entities_added = entities_after - entities_before |
|
|
|
|
|
self.logger.info( |
|
|
f"β
Document {i + 1} inserted - Entities added: {entities_added} (total: {entities_after})") |
|
|
|
|
|
await asyncio.sleep(1) |
|
|
|
|
|
except asyncio.TimeoutError: |
|
|
self.logger.error(f"β° Document {i + 1} insertion timed out after 30 seconds") |
|
|
insertion_task.cancel() |
|
|
continue |
|
|
|
|
|
except Exception as e: |
|
|
self.logger.error(f"β Failed to insert document {i + 1}: {e}") |
|
|
continue |
|
|
|
|
|
self.logger.info(f"π Insertion complete: {successful_insertions}/{len(all_content)} documents successful") |
|
|
|
|
|
|
|
|
if successful_insertions > 0: |
|
|
self.logger.info("π Final validation and cleaning...") |
|
|
await asyncio.sleep(5) |
|
|
|
|
|
is_valid = await self.validate_extracted_entities(rag, all_content) |
|
|
|
|
|
if not is_valid: |
|
|
self.logger.warning("π§Ή Cleaning hallucinated entities...") |
|
|
await self.clean_hallucinated_entities(rag, all_content) |
|
|
|
|
|
|
|
|
final_entities = await self._count_entities(rag) |
|
|
final_relationships = await self._count_relationships(rag) |
|
|
final_chunks = await self._count_chunks(rag) |
|
|
|
|
|
self.logger.info( |
|
|
f"π Final counts after cleaning: {final_chunks} chunks, {final_entities} entities, {final_relationships} relationships") |
|
|
|
|
|
if final_entities > 0: |
|
|
self.logger.info("π Entity extraction SUCCESS - HYBRID mode should work!") |
|
|
else: |
|
|
self.logger.warning("β οΈ No entities extracted - HYBRID mode will fail") |
|
|
|
|
|
|
|
|
try: |
|
|
|
|
|
storage_verified = False |
|
|
for storage_file in ['vdb_chunks.json', 'vdb_entities.json', 'vdb_relationships.json']: |
|
|
file_path = f"{rag.working_dir}/{storage_file}" |
|
|
if os.path.exists(file_path) and os.path.getsize(file_path) > 100: |
|
|
with open(file_path, 'r') as f: |
|
|
data = json.load(f) |
|
|
if data.get('data') and len(data['data']) > 0: |
|
|
storage_verified = True |
|
|
self.logger.info(f"β
{storage_file}: {len(data['data'])} items") |
|
|
|
|
|
if storage_verified: |
|
|
self.logger.info("π Storage verification PASSED") |
|
|
else: |
|
|
self.logger.error("β Storage verification FAILED") |
|
|
|
|
|
except Exception as e: |
|
|
self.logger.error(f"β Storage verification error: {e}") |
|
|
|
|
|
self.logger.info("π Starting entity extraction debugging...") |
|
|
await self.debug_entity_extraction(rag) |
|
|
|
|
|
return successful_insertions > 0 |
|
|
|
|
|
async def _count_entities(self, rag: LightRAG) -> int: |
|
|
"""Count entities in storage""" |
|
|
try: |
|
|
entities_file = f"{rag.working_dir}/vdb_entities.json" |
|
|
if os.path.exists(entities_file): |
|
|
with open(entities_file, 'r') as f: |
|
|
data = json.load(f) |
|
|
return len(data.get('data', [])) |
|
|
return 0 |
|
|
except: |
|
|
return 0 |
|
|
|
|
|
async def _count_relationships(self, rag: LightRAG) -> int: |
|
|
"""Count relationships in storage""" |
|
|
try: |
|
|
relationships_file = f"{rag.working_dir}/vdb_relationships.json" |
|
|
if os.path.exists(relationships_file): |
|
|
with open(relationships_file, 'r') as f: |
|
|
data = json.load(f) |
|
|
return len(data.get('data', [])) |
|
|
return 0 |
|
|
except: |
|
|
return 0 |
|
|
|
|
|
async def _count_chunks(self, rag: LightRAG) -> int: |
|
|
"""Count chunks in storage""" |
|
|
try: |
|
|
chunks_file = f"{rag.working_dir}/vdb_chunks.json" |
|
|
if os.path.exists(chunks_file): |
|
|
with open(chunks_file, 'r') as f: |
|
|
data = json.load(f) |
|
|
return len(data.get('data', [])) |
|
|
return 0 |
|
|
except: |
|
|
return 0 |
|
|
|
|
|
|
|
|
|
|
|
async def fix_entity_extraction_for_custom_ai(self, rag: LightRAG, content_list: List[str]): |
|
|
"""Fix entity extraction issues for custom AI""" |
|
|
|
|
|
try: |
|
|
self.logger.info("π§ Starting entity extraction fix...") |
|
|
|
|
|
|
|
|
for storage_file in ['vdb_entities.json', 'vdb_chunks.json', 'vdb_relationships.json']: |
|
|
file_path = f"{rag.working_dir}/{storage_file}" |
|
|
if os.path.exists(file_path): |
|
|
|
|
|
backup_path = f"{file_path}.backup" |
|
|
shutil.copy2(file_path, backup_path) |
|
|
self.logger.info(f"π Backed up {storage_file}") |
|
|
|
|
|
|
|
|
successful_extractions = 0 |
|
|
|
|
|
for i, content in enumerate(content_list): |
|
|
if len(content.strip()) < 50: |
|
|
continue |
|
|
|
|
|
try: |
|
|
self.logger.info(f"π Processing content chunk {i + 1}/{len(content_list)}") |
|
|
|
|
|
|
|
|
enhanced_prompt = f""" |
|
|
You are an expert at extracting entities and relationships from text. |
|
|
|
|
|
Extract entities and relationships from this text and return ONLY the extracted information in the exact format requested. |
|
|
|
|
|
Text to analyze: |
|
|
{content[:2000]} |
|
|
|
|
|
Requirements: |
|
|
1. Extract ALL important entities (people, organizations, locations, concepts, objects) |
|
|
2. For each entity provide: name, type (person/organization/geo/event/category), description |
|
|
3. Extract relationships between entities with descriptions and strength (1-10) |
|
|
4. Identify high-level keywords that summarize main concepts |
|
|
5. Ignore all entities and do not add if they are: Alex, Taylor, Jordan, Cruz, The Device. |
|
|
6. Make sure to double check if this entity is actually in the text or are you just hallucinating it. |
|
|
|
|
|
Return the results in this exact format: |
|
|
entity<entity_name><|><entity_type><|><entity_description> |
|
|
relationship<source_entity><|><target_entity><|><relationship_description><|><keywords><|><strength> |
|
|
content_keywords<high_level_keywords> |
|
|
|
|
|
Use ## to separate each item. |
|
|
""" |
|
|
|
|
|
|
|
|
extraction_task = asyncio.create_task( |
|
|
rag.ainsert(content[:3000]) |
|
|
) |
|
|
|
|
|
try: |
|
|
await asyncio.wait_for(extraction_task, timeout=45.0) |
|
|
successful_extractions += 1 |
|
|
self.logger.info(f"β
Successfully processed chunk {i + 1}") |
|
|
|
|
|
|
|
|
await asyncio.sleep(2) |
|
|
|
|
|
except asyncio.TimeoutError: |
|
|
self.logger.warning(f"β° Chunk {i + 1} timed out") |
|
|
extraction_task.cancel() |
|
|
continue |
|
|
|
|
|
except Exception as e: |
|
|
self.logger.error(f"β Failed to process chunk {i + 1}: {e}") |
|
|
continue |
|
|
|
|
|
|
|
|
await asyncio.sleep(5) |
|
|
|
|
|
entities_count = await self._count_entities(rag) |
|
|
chunks_count = await self._count_chunks(rag) |
|
|
relationships_count = await self._count_relationships(rag) |
|
|
|
|
|
self.logger.info( |
|
|
f"π Extraction results: {chunks_count} chunks, {entities_count} entities, {relationships_count} relationships") |
|
|
|
|
|
if entities_count > 0: |
|
|
self.logger.info("π Entity extraction fix SUCCESS!") |
|
|
return True |
|
|
else: |
|
|
self.logger.error("β Entity extraction fix FAILED - no entities found") |
|
|
return False |
|
|
|
|
|
except Exception as e: |
|
|
self.logger.error(f"β Entity extraction fix failed: {e}") |
|
|
return False |
|
|
|
|
|
|
|
|
async def force_rebuild_custom_ai(self, ai_id: str, user_id: str): |
|
|
"""Force rebuild a custom AI from scratch""" |
|
|
|
|
|
try: |
|
|
self.logger.info(f"π§ Force rebuilding custom AI: {ai_id}") |
|
|
|
|
|
|
|
|
async with self.db.pool.acquire() as conn: |
|
|
|
|
|
ai_info = await conn.fetchrow(""" |
|
|
SELECT * FROM rag_instances |
|
|
WHERE ai_id = $1 AND user_id = $2 AND ai_type = 'custom' |
|
|
""", ai_id, user_id) |
|
|
|
|
|
if not ai_info: |
|
|
self.logger.error(f"β Custom AI not found: {ai_id}") |
|
|
return False |
|
|
|
|
|
|
|
|
files = await conn.fetch(""" |
|
|
SELECT content_text, original_name FROM knowledge_files |
|
|
WHERE rag_instance_id = $1 AND filename != 'lightrag_storage.json' |
|
|
AND processing_status = 'processed' |
|
|
""", ai_info['id']) |
|
|
|
|
|
if not files: |
|
|
self.logger.error(f"β No files found for custom AI: {ai_id}") |
|
|
return False |
|
|
|
|
|
|
|
|
config = RAGConfig( |
|
|
ai_type="custom", |
|
|
user_id=user_id, |
|
|
ai_id=ai_id, |
|
|
name=ai_info['name'], |
|
|
description=ai_info['description'] |
|
|
) |
|
|
|
|
|
|
|
|
rag = await self._create_new_rag_instance(config) |
|
|
|
|
|
|
|
|
content_list = [] |
|
|
for file_record in files: |
|
|
if file_record['content_text']: |
|
|
content_list.append(file_record['content_text']) |
|
|
|
|
|
|
|
|
success = await self.fix_entity_extraction_for_custom_ai(rag, content_list) |
|
|
|
|
|
if success: |
|
|
|
|
|
await self._save_to_database(config, rag) |
|
|
|
|
|
|
|
|
cache_key = config.get_cache_key() |
|
|
if cache_key in self.rag_instances: |
|
|
del self.rag_instances[cache_key] |
|
|
|
|
|
self.logger.info(f"β
Successfully rebuilt custom AI: {ai_id}") |
|
|
return True |
|
|
else: |
|
|
self.logger.error(f"β Failed to rebuild custom AI: {ai_id}") |
|
|
return False |
|
|
|
|
|
except Exception as e: |
|
|
self.logger.error(f"β Force rebuild failed: {e}") |
|
|
return False |
|
|
|
|
|
async def _force_storage_to_database(self, rag: LightRAG, rag_instance_id: str): |
|
|
try: |
|
|
entities_file = f"{rag.working_dir}/vdb_entities.json" |
|
|
chunks_file = f"{rag.working_dir}/vdb_chunks.json" |
|
|
relationships_file = f"{rag.working_dir}/vdb_relationships.json" |
|
|
|
|
|
storage_data = {} |
|
|
total_items = 0 |
|
|
|
|
|
storage_files = { |
|
|
'vdb_entities': entities_file, |
|
|
'vdb_chunks': chunks_file, |
|
|
'vdb_relationships': relationships_file |
|
|
} |
|
|
|
|
|
for storage_key, file_path in storage_files.items(): |
|
|
if os.path.exists(file_path): |
|
|
try: |
|
|
with open(file_path, 'r') as f: |
|
|
file_data = json.load(f) |
|
|
|
|
|
if isinstance(file_data, dict) and 'data' in file_data: |
|
|
item_count = len(file_data.get('data', [])) |
|
|
total_items += item_count |
|
|
storage_data[storage_key] = file_data |
|
|
|
|
|
self.logger.info(f"β
Read {storage_key}: {item_count} items") |
|
|
else: |
|
|
self.logger.warning(f"β οΈ Invalid format in {file_path}") |
|
|
storage_data[storage_key] = {"data": [], "matrix": ""} |
|
|
|
|
|
except Exception as e: |
|
|
self.logger.error(f"β Failed to read {file_path}: {e}") |
|
|
storage_data[storage_key] = {"data": [], "matrix": ""} |
|
|
else: |
|
|
self.logger.warning(f"β οΈ Storage file not found: {file_path}") |
|
|
storage_data[storage_key] = {"data": [], "matrix": ""} |
|
|
|
|
|
|
|
|
if total_items > 0 and storage_data: |
|
|
try: |
|
|
async with self.db.pool.acquire() as conn: |
|
|
|
|
|
instance_exists = await conn.fetchval(""" |
|
|
SELECT COUNT(*) FROM rag_instances WHERE id = $1::uuid |
|
|
""", rag_instance_id) |
|
|
|
|
|
if not instance_exists: |
|
|
self.logger.error(f"β RAG instance {rag_instance_id} does not exist") |
|
|
return False |
|
|
|
|
|
|
|
|
await conn.execute(""" |
|
|
INSERT INTO knowledge_files ( |
|
|
id, user_id, rag_instance_id, filename, original_name, |
|
|
file_type, file_size, blob_url, content_text, |
|
|
processing_status, token_count, created_at, updated_at |
|
|
) VALUES ( |
|
|
gen_random_uuid(), 'system', $1::uuid, 'lightrag_storage.json', |
|
|
'LightRAG Storage Data', 'json', $2, 'database://storage', $3, |
|
|
'processed', $4, NOW(), NOW() |
|
|
) ON CONFLICT (rag_instance_id, filename) DO UPDATE SET |
|
|
content_text = EXCLUDED.content_text, |
|
|
file_size = EXCLUDED.file_size, |
|
|
token_count = EXCLUDED.token_count, |
|
|
updated_at = NOW() |
|
|
""", rag_instance_id, len(json.dumps(storage_data)), json.dumps(storage_data), total_items) |
|
|
|
|
|
self.logger.info( |
|
|
f"β
Stored LightRAG data for instance {rag_instance_id}: {total_items} total items") |
|
|
|
|
|
|
|
|
for key, data in storage_data.items(): |
|
|
item_count = len(data.get('data', [])) |
|
|
self.logger.info(f" - {key}: {item_count} items") |
|
|
|
|
|
return True |
|
|
|
|
|
except Exception as e: |
|
|
self.logger.error(f"β Database storage failed: {e}") |
|
|
import traceback |
|
|
self.logger.error(f"Full traceback: {traceback.format_exc()}") |
|
|
return False |
|
|
else: |
|
|
if not storage_data: |
|
|
self.logger.warning("β οΈ No storage data to save") |
|
|
else: |
|
|
self.logger.warning(f"β οΈ No items found in storage data (total: {total_items})") |
|
|
return False |
|
|
|
|
|
except Exception as e: |
|
|
self.logger.error(f"β Failed to store to database: {e}") |
|
|
import traceback |
|
|
self.logger.error(f"Full traceback: {traceback.format_exc()}") |
|
|
return False |
|
|
|
|
|
async def _wait_for_pipeline_completion(self, rag: LightRAG, doc_name: str, max_wait_time: int = 30): |
|
|
"""Wait for LightRAG 1.3.7 pipeline to complete processing""" |
|
|
|
|
|
for attempt in range(max_wait_time): |
|
|
try: |
|
|
await asyncio.sleep(1) |
|
|
|
|
|
if hasattr(rag, 'doc_status') and rag.doc_status: |
|
|
status_data = await rag.doc_status.get_all() |
|
|
if status_data: |
|
|
completed_docs = [doc for doc in status_data if 'completed' in str(doc).lower()] |
|
|
if completed_docs: |
|
|
self.logger.info(f"Pipeline processing detected for {doc_name}") |
|
|
return True |
|
|
|
|
|
if hasattr(rag.vector_storage, '_data') and rag.vector_storage._data: |
|
|
data_count = len(rag.vector_storage._data) |
|
|
if data_count > 0: |
|
|
self.logger.info(f"Vector storage contains {data_count} items after {doc_name}") |
|
|
return True |
|
|
|
|
|
if hasattr(rag, 'chunks') and rag.chunks: |
|
|
chunks_data = await rag.chunks.get_all() |
|
|
if chunks_data and len(chunks_data) > 0: |
|
|
self.logger.info(f"Chunks storage contains {len(chunks_data)} items after {doc_name}") |
|
|
return True |
|
|
|
|
|
except Exception as e: |
|
|
self.logger.debug(f"Pipeline check attempt {attempt + 1} failed: {e}") |
|
|
continue |
|
|
|
|
|
self.logger.warning(f"Pipeline completion check timed out for {doc_name}") |
|
|
return False |
|
|
|
|
|
async def _verify_knowledge_base_state(self, rag: LightRAG): |
|
|
"""Verify the final state of the knowledge base""" |
|
|
|
|
|
try: |
|
|
storage_stats = {} |
|
|
|
|
|
if hasattr(rag.vector_storage, '_data'): |
|
|
storage_stats['vector_items'] = len(rag.vector_storage._data) if rag.vector_storage._data else 0 |
|
|
|
|
|
if hasattr(rag, 'chunks') and rag.chunks: |
|
|
try: |
|
|
chunks_data = await rag.chunks.get_all() |
|
|
storage_stats['chunks'] = len(chunks_data) if chunks_data else 0 |
|
|
except: |
|
|
storage_stats['chunks'] = 0 |
|
|
|
|
|
if hasattr(rag, 'entities') and rag.entities: |
|
|
try: |
|
|
entities_data = await rag.entities.get_all() |
|
|
storage_stats['entities'] = len(entities_data) if entities_data else 0 |
|
|
except: |
|
|
storage_stats['entities'] = 0 |
|
|
|
|
|
if hasattr(rag, 'relationships') and rag.relationships: |
|
|
try: |
|
|
relationships_data = await rag.relationships.get_all() |
|
|
storage_stats['relationships'] = len(relationships_data) if relationships_data else 0 |
|
|
except: |
|
|
storage_stats['relationships'] = 0 |
|
|
|
|
|
self.logger.info(f"Knowledge base state: {storage_stats}") |
|
|
|
|
|
return any(count > 0 for count in storage_stats.values()) |
|
|
|
|
|
except Exception as e: |
|
|
self.logger.error(f"Failed to verify knowledge base state: {e}") |
|
|
return False |
|
|
|
|
|
def _intelligent_chunk_split(self, content: str, max_chunk_size: int = 8000) -> List[str]: |
|
|
"""Split content intelligently on sentence and paragraph boundaries""" |
|
|
|
|
|
if len(content) <= max_chunk_size: |
|
|
return [content] |
|
|
|
|
|
chunks = [] |
|
|
current_chunk = "" |
|
|
|
|
|
paragraphs = content.split('\n\n') |
|
|
|
|
|
for paragraph in paragraphs: |
|
|
if len(paragraph) > max_chunk_size: |
|
|
sentences = paragraph.split('. ') |
|
|
for sentence in sentences: |
|
|
if len(current_chunk) + len(sentence) + 2 <= max_chunk_size: |
|
|
current_chunk += sentence + '. ' |
|
|
else: |
|
|
if current_chunk: |
|
|
chunks.append(current_chunk.strip()) |
|
|
current_chunk = sentence + '. ' |
|
|
else: |
|
|
if len(current_chunk) + len(paragraph) + 2 <= max_chunk_size: |
|
|
current_chunk += paragraph + '\n\n' |
|
|
else: |
|
|
if current_chunk: |
|
|
chunks.append(current_chunk.strip()) |
|
|
current_chunk = paragraph + '\n\n' |
|
|
|
|
|
if current_chunk: |
|
|
chunks.append(current_chunk.strip()) |
|
|
|
|
|
return chunks |
|
|
|
|
|
def _split_content_into_chunks(self, content: str, max_length: int) -> List[str]: |
|
|
"""Split content into manageable chunks""" |
|
|
chunks = [] |
|
|
words = content.split() |
|
|
current_chunk = [] |
|
|
current_length = 0 |
|
|
|
|
|
for word in words: |
|
|
if current_length + len(word) + 1 <= max_length: |
|
|
current_chunk.append(word) |
|
|
current_length += len(word) + 1 |
|
|
else: |
|
|
if current_chunk: |
|
|
chunks.append(' '.join(current_chunk)) |
|
|
current_chunk = [word] |
|
|
current_length = len(word) |
|
|
|
|
|
if current_chunk: |
|
|
chunks.append(' '.join(current_chunk)) |
|
|
|
|
|
return chunks |
|
|
|
|
|
async def _save_to_database(self, config: RAGConfig, rag: LightRAG): |
|
|
"""Save RAG instance to Database with CORRECT order of operations""" |
|
|
|
|
|
try: |
|
|
self.logger.info("πΎ Starting database save process...") |
|
|
|
|
|
|
|
|
metadata = await self._calculate_storage_metadata(rag) |
|
|
|
|
|
|
|
|
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") |
|
|
base_filename = f"rag_{config.ai_type}_{config.user_id or 'system'}_{config.ai_id or 'default'}_{timestamp}" |
|
|
|
|
|
fake_blob_urls = { |
|
|
'graph_blob_url': f"database://graph_{base_filename}", |
|
|
'vector_blob_url': f"database://vector_{base_filename}", |
|
|
'config_blob_url': f"database://config_{base_filename}" |
|
|
} |
|
|
|
|
|
|
|
|
rag_instance_id = await self.db.save_rag_instance( |
|
|
config, |
|
|
fake_blob_urls['graph_blob_url'], |
|
|
fake_blob_urls['vector_blob_url'], |
|
|
fake_blob_urls['config_blob_url'], |
|
|
metadata |
|
|
) |
|
|
|
|
|
self.logger.info(f"β
Created RAG instance in database: {rag_instance_id}") |
|
|
|
|
|
|
|
|
storage_success = await self._force_storage_to_database(rag, str(rag_instance_id)) |
|
|
|
|
|
if storage_success: |
|
|
self.logger.info(f"β
Successfully saved complete RAG to database: {rag_instance_id}") |
|
|
else: |
|
|
self.logger.warning(f"β οΈ RAG instance created but storage data save failed: {rag_instance_id}") |
|
|
|
|
|
except Exception as e: |
|
|
self.logger.error(f"β Failed to save RAG to database: {e}") |
|
|
import traceback |
|
|
self.logger.error(f"Full traceback: {traceback.format_exc()}") |
|
|
raise |
|
|
|
|
|
async def _calculate_storage_metadata(self, rag: LightRAG) -> Dict[str, Any]: |
|
|
"""Calculate metadata from RAG storage""" |
|
|
|
|
|
try: |
|
|
total_chunks = 0 |
|
|
total_tokens = 0 |
|
|
file_count = 0 |
|
|
|
|
|
|
|
|
for storage_file in ['vdb_chunks.json', 'vdb_entities.json', 'vdb_relationships.json']: |
|
|
file_path = f"{rag.working_dir}/{storage_file}" |
|
|
if os.path.exists(file_path): |
|
|
try: |
|
|
with open(file_path, 'r') as f: |
|
|
data = json.load(f) |
|
|
if data.get('data'): |
|
|
chunk_count = len(data['data']) |
|
|
total_chunks += chunk_count |
|
|
|
|
|
|
|
|
for item in data['data']: |
|
|
if isinstance(item, dict) and 'content' in item: |
|
|
|
|
|
total_tokens += len(str(item['content'])) // 4 |
|
|
|
|
|
file_count += 1 |
|
|
except Exception as e: |
|
|
self.logger.warning(f"Failed to read {storage_file}: {e}") |
|
|
|
|
|
return { |
|
|
'total_chunks': total_chunks, |
|
|
'total_tokens': max(total_tokens, 100), |
|
|
'file_count': file_count |
|
|
} |
|
|
|
|
|
except Exception as e: |
|
|
self.logger.error(f"Failed to calculate metadata: {e}") |
|
|
return { |
|
|
'total_chunks': 0, |
|
|
'total_tokens': 100, |
|
|
'file_count': 0 |
|
|
} |
|
|
|
|
|
async def _load_from_database(self, config: RAGConfig) -> Optional[LightRAG]: |
|
|
"""Load RAG from database with PROPER NanoVectorDB restoration""" |
|
|
|
|
|
try: |
|
|
|
|
|
instance_data = await self.db.get_rag_instance(config) |
|
|
if not instance_data: |
|
|
self.logger.info(f"No RAG instance found in database for {config.get_cache_key()}") |
|
|
return None |
|
|
|
|
|
self.logger.info(f"π Found RAG instance: {instance_data['name']} (ID: {instance_data['id']})") |
|
|
|
|
|
|
|
|
async with self.db.pool.acquire() as conn: |
|
|
storage_record = await conn.fetchrow(""" |
|
|
SELECT content_text, file_size, token_count |
|
|
FROM knowledge_files |
|
|
WHERE rag_instance_id = $1 AND filename = 'lightrag_storage.json' |
|
|
AND processing_status = 'processed' |
|
|
ORDER BY created_at DESC |
|
|
LIMIT 1 |
|
|
""", instance_data['id']) |
|
|
|
|
|
if not storage_record or not storage_record['content_text']: |
|
|
self.logger.warning(f"β οΈ No storage data found in database for RAG {instance_data['id']}") |
|
|
return None |
|
|
|
|
|
self.logger.info( |
|
|
f"π― Found database storage: {storage_record['file_size']} bytes, {storage_record['token_count']} tokens") |
|
|
|
|
|
try: |
|
|
|
|
|
storage_data = json.loads(storage_record['content_text']) |
|
|
self.logger.info(f"π Parsed storage data with keys: {list(storage_data.keys())}") |
|
|
|
|
|
|
|
|
chunks_data = storage_data.get('vdb_chunks', {}) |
|
|
if not chunks_data.get('data') or len(chunks_data['data']) == 0: |
|
|
self.logger.warning("β No chunk data found in storage") |
|
|
return None |
|
|
|
|
|
chunk_count = len(chunks_data['data']) |
|
|
self.logger.info(f"π¦ Found {chunk_count} chunks in storage") |
|
|
|
|
|
|
|
|
working_dir = f"/tmp/rag_restored_{uuid.uuid4()}" |
|
|
os.makedirs(working_dir, exist_ok=True) |
|
|
|
|
|
|
|
|
for filename, file_data in storage_data.items(): |
|
|
try: |
|
|
file_path = f"{working_dir}/{filename}.json" |
|
|
|
|
|
|
|
|
if isinstance(file_data, dict) and 'data' in file_data: |
|
|
|
|
|
with open(file_path, 'w') as f: |
|
|
json.dump(file_data, f) |
|
|
|
|
|
file_size = os.path.getsize(file_path) |
|
|
self.logger.info(f"β
Wrote {filename}.json: {file_size} bytes") |
|
|
else: |
|
|
self.logger.warning(f"β οΈ Skipping {filename}: invalid format") |
|
|
|
|
|
except Exception as e: |
|
|
self.logger.error(f"β Failed to write {filename}: {e}") |
|
|
|
|
|
|
|
|
self.logger.info("π Creating LightRAG instance with restored files") |
|
|
|
|
|
rag = LightRAG( |
|
|
working_dir=working_dir, |
|
|
max_parallel_insert=2, |
|
|
llm_model_func=self.cloudflare_worker.query, |
|
|
llm_model_name=self.cloudflare_worker.llm_models[0], |
|
|
llm_model_max_token_size=4080, |
|
|
embedding_func=EmbeddingFunc( |
|
|
embedding_dim=1024, |
|
|
max_token_size=2048, |
|
|
func=self.cloudflare_worker.embedding_chunk, |
|
|
), |
|
|
graph_storage="NetworkXStorage", |
|
|
vector_storage="NanoVectorDBStorage", |
|
|
) |
|
|
|
|
|
|
|
|
await rag.initialize_storages() |
|
|
self.logger.info("π Initialized storages") |
|
|
|
|
|
|
|
|
if not hasattr(rag, 'pipeline_status') or rag.pipeline_status is None: |
|
|
rag.pipeline_status = {"history_messages": []} |
|
|
elif "history_messages" not in rag.pipeline_status: |
|
|
rag.pipeline_status["history_messages"] = [] |
|
|
|
|
|
|
|
|
self.logger.info("π§ͺ Testing RAG with comprehensive queries...") |
|
|
|
|
|
|
|
|
try: |
|
|
from lightrag import QueryParam |
|
|
test_response = await rag.aquery( |
|
|
"What are fire exit requirements?", |
|
|
QueryParam(mode="hybrid") |
|
|
) |
|
|
|
|
|
if test_response and len(test_response.strip()) > 50 and not test_response.startswith("Sorry"): |
|
|
self.logger.info(f"π SUCCESS: Hybrid query test passed - {len(test_response)} chars") |
|
|
return rag |
|
|
else: |
|
|
self.logger.warning(f"β οΈ Hybrid query failed: '{test_response[:100]}'") |
|
|
|
|
|
except Exception as e: |
|
|
self.logger.error(f"β Hybrid query test failed: {e}") |
|
|
|
|
|
|
|
|
try: |
|
|
local_response = await rag.aquery("fire safety", QueryParam(mode="local")) |
|
|
if local_response and len(local_response.strip()) > 20 and not local_response.startswith("Sorry"): |
|
|
self.logger.info(f"β
LOCAL query worked: {local_response[:100]}...") |
|
|
return rag |
|
|
except Exception as e: |
|
|
self.logger.error(f"β Local query failed: {e}") |
|
|
|
|
|
|
|
|
try: |
|
|
naive_response = await rag.aquery("fire", QueryParam(mode="naive")) |
|
|
if naive_response and len(naive_response.strip()) > 10 and not naive_response.startswith("Sorry"): |
|
|
self.logger.info(f"β
NAIVE query worked: {naive_response[:100]}...") |
|
|
return rag |
|
|
except Exception as e: |
|
|
self.logger.error(f"β Naive query failed: {e}") |
|
|
|
|
|
|
|
|
self.logger.error("β ALL query tests failed - RAG is not functional") |
|
|
return None |
|
|
|
|
|
except json.JSONDecodeError as e: |
|
|
self.logger.error(f"β Failed to parse JSON storage data: {e}") |
|
|
return None |
|
|
except Exception as e: |
|
|
self.logger.error(f"β Failed to restore from database storage: {e}") |
|
|
import traceback |
|
|
self.logger.error(f"Full traceback: {traceback.format_exc()}") |
|
|
return None |
|
|
|
|
|
except Exception as e: |
|
|
self.logger.error(f"β Database loading failed: {e}") |
|
|
return None |
|
|
|
|
|
async def _verify_rag_storage(self, rag: LightRAG) -> bool: |
|
|
"""Verify that RAG storage has been properly loaded with actual data""" |
|
|
try: |
|
|
|
|
|
vector_count = 0 |
|
|
if hasattr(rag.vector_storage, '_data') and rag.vector_storage._data: |
|
|
vector_count = len(rag.vector_storage._data) |
|
|
|
|
|
|
|
|
chunks_count = 0 |
|
|
if hasattr(rag, 'chunks') and rag.chunks: |
|
|
try: |
|
|
chunks_data = await rag.chunks.get_all() |
|
|
chunks_count = len(chunks_data) if chunks_data else 0 |
|
|
except: |
|
|
pass |
|
|
|
|
|
|
|
|
entities_count = 0 |
|
|
if hasattr(rag, 'entities') and rag.entities: |
|
|
try: |
|
|
entities_data = await rag.entities.get_all() |
|
|
entities_count = len(entities_data) if entities_data else 0 |
|
|
except: |
|
|
pass |
|
|
|
|
|
|
|
|
relationships_count = 0 |
|
|
if hasattr(rag, 'relationships') and rag.relationships: |
|
|
try: |
|
|
relationships_data = await rag.relationships.get_all() |
|
|
relationships_count = len(relationships_data) if relationships_data else 0 |
|
|
except: |
|
|
pass |
|
|
|
|
|
self.logger.info( |
|
|
f"π RAG storage verification: vectors={vector_count}, chunks={chunks_count}, entities={entities_count}, relationships={relationships_count}") |
|
|
|
|
|
|
|
|
has_data = vector_count > 0 or chunks_count > 0 or entities_count > 0 or relationships_count > 0 |
|
|
|
|
|
if has_data: |
|
|
self.logger.info("β
RAG verification PASSED - has working data") |
|
|
else: |
|
|
self.logger.warning("β RAG verification FAILED - no data found") |
|
|
|
|
|
return has_data |
|
|
|
|
|
except Exception as e: |
|
|
self.logger.error(f"Failed to verify RAG storage: {e}") |
|
|
return False |
|
|
|
|
|
async def _serialize_rag_state(self, rag: LightRAG) -> Dict[str, Any]: |
|
|
"""Serialize RAG state for storage in Vercel Blob + Database""" |
|
|
|
|
|
try: |
|
|
rag_state = { |
|
|
'graph': {}, |
|
|
'vectors': {}, |
|
|
'config': {} |
|
|
} |
|
|
|
|
|
|
|
|
if hasattr(rag, 'graph_storage') and rag.graph_storage: |
|
|
try: |
|
|
|
|
|
if hasattr(rag.graph_storage, '_graph'): |
|
|
import networkx as nx |
|
|
graph_data = nx.node_link_data(rag.graph_storage._graph) |
|
|
rag_state['graph'] = graph_data |
|
|
self.logger.info( |
|
|
f"π Serialized graph: {len(graph_data.get('nodes', []))} nodes, {len(graph_data.get('links', []))} edges") |
|
|
else: |
|
|
rag_state['graph'] = {} |
|
|
except Exception as e: |
|
|
self.logger.warning(f"Failed to serialize graph storage: {e}") |
|
|
rag_state['graph'] = {} |
|
|
|
|
|
|
|
|
if hasattr(rag, 'vector_storage') and rag.vector_storage: |
|
|
try: |
|
|
vectors_data = { |
|
|
'embeddings': [], |
|
|
'metadata': [], |
|
|
'config': { |
|
|
'embedding_dim': getattr(rag.vector_storage, 'embedding_dim', 1024), |
|
|
'metric': getattr(rag.vector_storage, 'metric', 'cosine') |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
if hasattr(rag.vector_storage, '_data') and rag.vector_storage._data: |
|
|
vectors_data['embeddings'] = rag.vector_storage._data.tolist() if hasattr( |
|
|
rag.vector_storage._data, 'tolist') else list(rag.vector_storage._data) |
|
|
|
|
|
if hasattr(rag.vector_storage, '_metadata') and rag.vector_storage._metadata: |
|
|
vectors_data['metadata'] = rag.vector_storage._metadata |
|
|
|
|
|
rag_state['vectors'] = vectors_data |
|
|
self.logger.info(f"π Serialized vectors: {len(vectors_data['embeddings'])} embeddings") |
|
|
|
|
|
except Exception as e: |
|
|
self.logger.warning(f"Failed to serialize vector storage: {e}") |
|
|
rag_state['vectors'] = {'embeddings': [], 'metadata': [], 'config': {}} |
|
|
|
|
|
|
|
|
rag_state['config'] = { |
|
|
'working_dir': rag.working_dir, |
|
|
'llm_model_name': getattr(rag, 'llm_model_name', ''), |
|
|
'llm_model_max_token_size': getattr(rag, 'llm_model_max_token_size', 4080), |
|
|
'graph_storage_type': 'NetworkXStorage', |
|
|
'vector_storage_type': 'NanoVectorDBStorage', |
|
|
'embedding_dim': 1024, |
|
|
'created_at': datetime.now().isoformat() |
|
|
} |
|
|
|
|
|
|
|
|
if hasattr(rag, 'pipeline_status') and rag.pipeline_status: |
|
|
rag_state['config']['pipeline_status'] = rag.pipeline_status |
|
|
|
|
|
self.logger.info(f"β
Successfully serialized RAG state") |
|
|
return rag_state |
|
|
|
|
|
except Exception as e: |
|
|
self.logger.error(f"Failed to serialize RAG state: {e}") |
|
|
|
|
|
return { |
|
|
'graph': {}, |
|
|
'vectors': {'embeddings': [], 'metadata': [], 'config': {}}, |
|
|
'config': { |
|
|
'working_dir': getattr(rag, 'working_dir', '/tmp/unknown'), |
|
|
'created_at': datetime.now().isoformat() |
|
|
} |
|
|
} |
|
|
|
|
|
async def _deserialize_rag_state(self, rag_state: Dict[str, Any], working_dir: str) -> LightRAG: |
|
|
"""Deserialize RAG state from Vercel Blob storage""" |
|
|
|
|
|
try: |
|
|
|
|
|
rag = LightRAG( |
|
|
working_dir=working_dir, |
|
|
max_parallel_insert=2, |
|
|
llm_model_func=self.cloudflare_worker.query, |
|
|
llm_model_name=self.cloudflare_worker.llm_models[0], |
|
|
llm_model_max_token_size=4080, |
|
|
embedding_func=EmbeddingFunc( |
|
|
embedding_dim=1024, |
|
|
max_token_size=2048, |
|
|
func=self.cloudflare_worker.embedding_chunk, |
|
|
), |
|
|
graph_storage="NetworkXStorage", |
|
|
vector_storage="NanoVectorDBStorage", |
|
|
) |
|
|
|
|
|
|
|
|
await rag.initialize_storages() |
|
|
|
|
|
|
|
|
if rag_state.get('graph') and hasattr(rag, 'graph_storage'): |
|
|
try: |
|
|
import networkx as nx |
|
|
graph_data = rag_state['graph'] |
|
|
if graph_data and 'nodes' in graph_data: |
|
|
restored_graph = nx.node_link_graph(graph_data) |
|
|
rag.graph_storage._graph = restored_graph |
|
|
self.logger.info(f"π Restored graph: {len(graph_data.get('nodes', []))} nodes") |
|
|
except Exception as e: |
|
|
self.logger.warning(f"Failed to restore graph: {e}") |
|
|
|
|
|
|
|
|
if rag_state.get('vectors') and hasattr(rag, 'vector_storage'): |
|
|
try: |
|
|
vectors_data = rag_state['vectors'] |
|
|
if vectors_data.get('embeddings'): |
|
|
embeddings = np.array(vectors_data['embeddings']) |
|
|
rag.vector_storage._data = embeddings |
|
|
|
|
|
if vectors_data.get('metadata'): |
|
|
rag.vector_storage._metadata = vectors_data['metadata'] |
|
|
|
|
|
self.logger.info(f"π Restored vectors: {len(vectors_data.get('embeddings', []))} embeddings") |
|
|
except Exception as e: |
|
|
self.logger.warning(f"Failed to restore vectors: {e}") |
|
|
|
|
|
|
|
|
if rag_state.get('config'): |
|
|
config = rag_state['config'] |
|
|
if config.get('pipeline_status'): |
|
|
rag.pipeline_status = config['pipeline_status'] |
|
|
|
|
|
|
|
|
if not hasattr(rag, 'pipeline_status') or rag.pipeline_status is None: |
|
|
rag.pipeline_status = {"history_messages": []} |
|
|
|
|
|
self.logger.info("β
Successfully deserialized RAG state") |
|
|
return rag |
|
|
|
|
|
except Exception as e: |
|
|
self.logger.error(f"Failed to deserialize RAG state: {e}") |
|
|
raise |
|
|
|
|
|
async def _estimate_tokens(self, rag_state: Dict[str, Any]) -> int: |
|
|
"""Estimate token count from RAG state""" |
|
|
|
|
|
try: |
|
|
token_count = 0 |
|
|
|
|
|
|
|
|
if rag_state.get('vectors', {}).get('embeddings'): |
|
|
embeddings = rag_state['vectors']['embeddings'] |
|
|
token_count += len(embeddings) * 10 |
|
|
|
|
|
|
|
|
if rag_state.get('graph', {}).get('nodes'): |
|
|
nodes = rag_state['graph']['nodes'] |
|
|
token_count += len(nodes) * 5 |
|
|
|
|
|
|
|
|
if rag_state.get('graph', {}).get('links'): |
|
|
links = rag_state['graph']['links'] |
|
|
token_count += len(links) * 3 |
|
|
|
|
|
return max(token_count, 100) |
|
|
|
|
|
except Exception as e: |
|
|
self.logger.warning(f"Failed to estimate tokens: {e}") |
|
|
return 100 |
|
|
|
|
|
async def query_with_memory( |
|
|
self, |
|
|
ai_type: str, |
|
|
question: str, |
|
|
conversation_id: str, |
|
|
user_id: str, |
|
|
ai_id: Optional[str] = None, |
|
|
mode: str = "hybrid" |
|
|
) -> str: |
|
|
"""Query RAG with conversation memory""" |
|
|
try: |
|
|
|
|
|
rag_instance = await self.get_or_create_rag_instance( |
|
|
ai_type=ai_type, |
|
|
user_id=user_id if ai_type == "custom" else None, |
|
|
ai_id=ai_id, |
|
|
name=f"{ai_type.title()} AI", |
|
|
description=f"AI assistant for {ai_type}" |
|
|
) |
|
|
|
|
|
|
|
|
await self.db.save_conversation_message( |
|
|
conversation_id, "user", question, { |
|
|
"user_id": user_id, |
|
|
"ai_type": ai_type, |
|
|
"ai_id": ai_id |
|
|
} |
|
|
) |
|
|
|
|
|
|
|
|
from lightrag import QueryParam |
|
|
response = await rag_instance.aquery(question, QueryParam(mode=mode)) |
|
|
|
|
|
|
|
|
await self.db.save_conversation_message( |
|
|
conversation_id, "assistant", response, { |
|
|
"mode": mode, |
|
|
"ai_type": ai_type, |
|
|
"ai_id": ai_id, |
|
|
"user_id": user_id |
|
|
} |
|
|
) |
|
|
|
|
|
return response |
|
|
|
|
|
except Exception as e: |
|
|
self.logger.error(f"Query with memory failed: {e}") |
|
|
|
|
|
fallback_response = await self.cloudflare_worker.query( |
|
|
question, |
|
|
f"You are a helpful {ai_type} AI assistant." |
|
|
) |
|
|
|
|
|
|
|
|
await self.db.save_conversation_message( |
|
|
conversation_id, "assistant", fallback_response, { |
|
|
"mode": "fallback", |
|
|
"ai_type": ai_type, |
|
|
"user_id": user_id, |
|
|
"error": str(e) |
|
|
} |
|
|
) |
|
|
|
|
|
return fallback_response |
|
|
|
|
|
async def _load_from_blob_storage(self, instance_data: Dict[str, Any]) -> Optional[LightRAG]: |
|
|
"""Load RAG from Vercel Blob storage (fallback method)""" |
|
|
|
|
|
try: |
|
|
self.logger.info("π Loading RAG from Vercel Blob storage") |
|
|
|
|
|
|
|
|
self.logger.info("π₯ Downloading RAG state from Vercel Blob...") |
|
|
|
|
|
graph_data = await self.blob_client.get(instance_data['graph_blob_url']) |
|
|
vector_data = await self.blob_client.get(instance_data['vector_blob_url']) |
|
|
config_data = await self.blob_client.get(instance_data['config_blob_url']) |
|
|
|
|
|
|
|
|
graph_state = pickle.loads(gzip.decompress(graph_data)) |
|
|
vector_state = pickle.loads(gzip.decompress(vector_data)) |
|
|
config_state = pickle.loads(gzip.decompress(config_data)) |
|
|
|
|
|
rag_state = { |
|
|
'graph': graph_state, |
|
|
'vectors': vector_state, |
|
|
'config': config_state |
|
|
} |
|
|
|
|
|
self.logger.info("β
Successfully downloaded and deserialized RAG state") |
|
|
|
|
|
|
|
|
working_dir = f"/tmp/rag_restored_{uuid.uuid4()}" |
|
|
os.makedirs(working_dir, exist_ok=True) |
|
|
|
|
|
|
|
|
rag = await self._deserialize_rag_state(rag_state, working_dir) |
|
|
|
|
|
return rag |
|
|
|
|
|
except Exception as e: |
|
|
self.logger.error(f"β Failed to load RAG from Vercel Blob: {e}") |
|
|
return None |
|
|
|
|
|
async def test_model_entity_extraction(self): |
|
|
"""Test different models to see which extracts entities best""" |
|
|
|
|
|
test_content = """ |
|
|
Fire extinguishers are required in commercial buildings. Type A fire extinguishers are used for ordinary combustible materials like wood and paper. Emergency exits must be clearly marked with illuminated exit signs. Sprinkler systems are mandatory in buildings over 15,000 square feet. Building codes require fire-resistant construction materials. |
|
|
""" |
|
|
|
|
|
results = {} |
|
|
|
|
|
for i, model in enumerate(self.llm_models[:5]): |
|
|
try: |
|
|
self.logger.info(f"π§ͺ Testing entity extraction with {model}") |
|
|
|
|
|
|
|
|
original_index = self.current_llm_index |
|
|
self.current_llm_index = i |
|
|
|
|
|
|
|
|
response = await self.query( |
|
|
f"Extract all important technical entities, concepts, and objects from this text. List each entity with a brief description:\n\n{test_content}", |
|
|
"You are an expert at identifying technical entities and concepts in specialized documents." |
|
|
) |
|
|
|
|
|
|
|
|
entity_count = response.count('\n') if response else 0 |
|
|
|
|
|
results[model] = { |
|
|
"response_length": len(response) if response else 0, |
|
|
"estimated_entities": entity_count, |
|
|
"response_preview": response[:200] if response else "No response" |
|
|
} |
|
|
|
|
|
self.logger.info( |
|
|
f" π {model}: {entity_count} estimated entities, {len(response) if response else 0} chars") |
|
|
|
|
|
|
|
|
self.current_llm_index = original_index |
|
|
|
|
|
except Exception as e: |
|
|
results[model] = {"error": str(e)} |
|
|
self.logger.error(f" β {model} failed: {e}") |
|
|
|
|
|
|
|
|
best_model = None |
|
|
best_score = 0 |
|
|
|
|
|
for model, result in results.items(): |
|
|
if "error" not in result: |
|
|
score = result.get("estimated_entities", 0) + (result.get("response_length", 0) // 100) |
|
|
if score > best_score: |
|
|
best_score = score |
|
|
best_model = model |
|
|
|
|
|
if best_model: |
|
|
self.logger.info(f"π Best model for entity extraction: {best_model}") |
|
|
|
|
|
self.current_llm_index = self.llm_models.index(best_model) |
|
|
|
|
|
return results |
|
|
|
|
|
|
|
|
|
|
|
lightrag_manager: Optional[PersistentLightRAGManager] = None |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
async def initialize_lightrag_manager() -> PersistentLightRAGManager: |
|
|
"""Initialize with OPTIMIZED models for entity extraction""" |
|
|
global lightrag_manager |
|
|
|
|
|
if lightrag_manager is None: |
|
|
|
|
|
func_logger = logging.getLogger(__name__) |
|
|
|
|
|
|
|
|
validate_environment() |
|
|
|
|
|
|
|
|
cloudflare_api_key = os.getenv("CLOUDFLARE_API_KEY") |
|
|
cloudflare_account_id = os.getenv("CLOUDFLARE_ACCOUNT_ID") |
|
|
database_url = os.getenv("DATABASE_URL") |
|
|
redis_url = os.getenv("REDIS_URL") |
|
|
blob_token = os.getenv("BLOB_READ_WRITE_TOKEN") |
|
|
|
|
|
|
|
|
api_base_url = f"https://api.cloudflare.com/client/v4/accounts/{cloudflare_account_id}/ai/run/" |
|
|
cloudflare_worker = CloudflareWorker( |
|
|
cloudflare_api_key=cloudflare_api_key, |
|
|
api_base_url=api_base_url, |
|
|
llm_model_name="@cf/meta/llama-3.1-8b-instruct", |
|
|
embedding_model_name="@cf/baai/bge-large-en-v1.5" |
|
|
) |
|
|
|
|
|
|
|
|
func_logger.info("π§ͺ Testing enhanced model configuration...") |
|
|
try: |
|
|
test_response = await cloudflare_worker.query( |
|
|
"Extract entities from: Fire extinguishers are required in commercial buildings.", |
|
|
"You are an expert at identifying technical entities and concepts." |
|
|
) |
|
|
func_logger.info(f"β
Model test successful: {test_response[:100]}...") |
|
|
except Exception as e: |
|
|
func_logger.warning(f"β οΈ Model test failed: {e}") |
|
|
|
|
|
|
|
|
db_manager = DatabaseManager(database_url, redis_url) |
|
|
await db_manager.connect() |
|
|
|
|
|
|
|
|
blob_client = VercelBlobClient(blob_token) |
|
|
|
|
|
|
|
|
lightrag_manager = PersistentLightRAGManager( |
|
|
cloudflare_worker, db_manager, blob_client |
|
|
) |
|
|
|
|
|
return lightrag_manager |
|
|
|
|
|
|
|
|
def get_lightrag_manager() -> Optional[PersistentLightRAGManager]: |
|
|
"""Get the current LightRAG manager instance""" |
|
|
return lightrag_manager |