|
import glob
|
|
import json
|
|
import os
|
|
import shutil
|
|
|
|
import torch
|
|
from trainer import get_last_checkpoint
|
|
|
|
from tests import get_device_id, get_tests_output_path, run_cli
|
|
from TTS.tts.configs.overflow_config import OverflowConfig
|
|
|
|
config_path = os.path.join(get_tests_output_path(), "test_model_config.json")
|
|
output_path = os.path.join(get_tests_output_path(), "train_outputs")
|
|
parameter_path = os.path.join(get_tests_output_path(), "lj_parameters.pt")
|
|
|
|
torch.save({"mean": -5.5138, "std": 2.0636, "init_transition_prob": 0.3212}, parameter_path)
|
|
|
|
config = OverflowConfig(
|
|
batch_size=3,
|
|
eval_batch_size=3,
|
|
num_loader_workers=0,
|
|
num_eval_loader_workers=0,
|
|
text_cleaner="phoneme_cleaners",
|
|
use_phonemes=True,
|
|
phoneme_language="en-us",
|
|
phoneme_cache_path=os.path.join(get_tests_output_path(), "train_outputs/phoneme_cache/"),
|
|
run_eval=True,
|
|
test_delay_epochs=-1,
|
|
mel_statistics_parameter_path=parameter_path,
|
|
epochs=1,
|
|
print_step=1,
|
|
test_sentences=[
|
|
"Be a voice, not an echo.",
|
|
],
|
|
print_eval=True,
|
|
max_sampling_time=50,
|
|
)
|
|
config.audio.do_trim_silence = True
|
|
config.audio.trim_db = 60
|
|
config.save_json(config_path)
|
|
|
|
|
|
|
|
command_train = (
|
|
f"CUDA_VISIBLE_DEVICES='{get_device_id()}' python TTS/bin/train_tts.py --config_path {config_path} "
|
|
f"--coqpit.output_path {output_path} "
|
|
"--coqpit.datasets.0.formatter ljspeech "
|
|
"--coqpit.datasets.0.meta_file_train metadata.csv "
|
|
"--coqpit.datasets.0.meta_file_val metadata.csv "
|
|
"--coqpit.datasets.0.path tests/data/ljspeech "
|
|
"--coqpit.test_delay_epochs 0 "
|
|
)
|
|
run_cli(command_train)
|
|
|
|
|
|
|
|
if os.path.exists(parameter_path):
|
|
os.remove(parameter_path)
|
|
command_train = (
|
|
f"CUDA_VISIBLE_DEVICES='{get_device_id()}' python TTS/bin/train_tts.py --config_path {config_path} "
|
|
f"--coqpit.output_path {output_path} "
|
|
"--coqpit.datasets.0.formatter ljspeech "
|
|
"--coqpit.datasets.0.meta_file_train metadata.csv "
|
|
"--coqpit.datasets.0.meta_file_val metadata.csv "
|
|
"--coqpit.datasets.0.path tests/data/ljspeech "
|
|
"--coqpit.test_delay_epochs 0 "
|
|
)
|
|
run_cli(command_train)
|
|
|
|
|
|
continue_path = max(glob.glob(os.path.join(output_path, "*/")), key=os.path.getmtime)
|
|
|
|
|
|
continue_config_path = os.path.join(continue_path, "config.json")
|
|
continue_restore_path, _ = get_last_checkpoint(continue_path)
|
|
out_wav_path = os.path.join(get_tests_output_path(), "output.wav")
|
|
|
|
|
|
with open(continue_config_path, "r", encoding="utf-8") as f:
|
|
config_loaded = json.load(f)
|
|
assert config_loaded["characters"] is not None
|
|
assert config_loaded["output_path"] in continue_path
|
|
assert config_loaded["test_delay_epochs"] == 0
|
|
|
|
|
|
inference_command = f"CUDA_VISIBLE_DEVICES='{get_device_id()}' tts --text 'This is an example.' --config_path {continue_config_path} --model_path {continue_restore_path} --out_path {out_wav_path}"
|
|
run_cli(inference_command)
|
|
|
|
|
|
command_train = f"CUDA_VISIBLE_DEVICES='{get_device_id()}' python TTS/bin/train_tts.py --continue_path {continue_path} "
|
|
run_cli(command_train)
|
|
shutil.rmtree(continue_path)
|
|
|