|
import os
|
|
|
|
from trainer import Trainer, TrainerArgs
|
|
|
|
from TTS.config.shared_configs import BaseAudioConfig
|
|
from TTS.tts.configs.shared_configs import BaseDatasetConfig
|
|
from TTS.tts.configs.tacotron2_config import Tacotron2Config
|
|
from TTS.tts.datasets import load_tts_samples
|
|
from TTS.tts.models.tacotron2 import Tacotron2
|
|
from TTS.tts.utils.speakers import SpeakerManager
|
|
from TTS.tts.utils.text.tokenizer import TTSTokenizer
|
|
from TTS.utils.audio import AudioProcessor
|
|
|
|
output_path = os.path.dirname(os.path.abspath(__file__))
|
|
dataset_config = BaseDatasetConfig(formatter="vctk", meta_file_train="", path=os.path.join(output_path, "../VCTK/"))
|
|
|
|
audio_config = BaseAudioConfig(
|
|
sample_rate=22050,
|
|
resample=False,
|
|
do_trim_silence=True,
|
|
trim_db=23.0,
|
|
signal_norm=False,
|
|
mel_fmin=0.0,
|
|
mel_fmax=8000,
|
|
spec_gain=1.0,
|
|
log_func="np.log",
|
|
preemphasis=0.0,
|
|
)
|
|
|
|
config = Tacotron2Config(
|
|
audio=audio_config,
|
|
batch_size=32,
|
|
eval_batch_size=16,
|
|
num_loader_workers=4,
|
|
num_eval_loader_workers=4,
|
|
run_eval=True,
|
|
test_delay_epochs=-1,
|
|
r=2,
|
|
|
|
double_decoder_consistency=True,
|
|
epochs=1000,
|
|
text_cleaner="phoneme_cleaners",
|
|
use_phonemes=True,
|
|
phoneme_language="en-us",
|
|
phoneme_cache_path=os.path.join(output_path, "phoneme_cache"),
|
|
print_step=150,
|
|
print_eval=False,
|
|
mixed_precision=True,
|
|
min_text_len=0,
|
|
max_text_len=500,
|
|
min_audio_len=0,
|
|
max_audio_len=44000 * 10,
|
|
output_path=output_path,
|
|
datasets=[dataset_config],
|
|
use_speaker_embedding=True,
|
|
decoder_ssim_alpha=0.0,
|
|
postnet_ssim_alpha=0.0,
|
|
postnet_diff_spec_alpha=0.0,
|
|
decoder_diff_spec_alpha=0.0,
|
|
attention_norm="softmax",
|
|
optimizer="Adam",
|
|
lr_scheduler=None,
|
|
lr=3e-5,
|
|
)
|
|
|
|
|
|
|
|
|
|
ap = AudioProcessor.init_from_config(config)
|
|
|
|
|
|
|
|
|
|
tokenizer, config = TTSTokenizer.init_from_config(config)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
train_samples, eval_samples = load_tts_samples(
|
|
dataset_config,
|
|
eval_split=True,
|
|
eval_split_max_size=config.eval_split_max_size,
|
|
eval_split_size=config.eval_split_size,
|
|
)
|
|
|
|
|
|
|
|
speaker_manager = SpeakerManager()
|
|
speaker_manager.set_ids_from_data(train_samples + eval_samples, parse_key="speaker_name")
|
|
|
|
|
|
model = Tacotron2(config, ap, tokenizer, speaker_manager)
|
|
|
|
|
|
|
|
|
|
trainer = Trainer(
|
|
TrainerArgs(), config, output_path, model=model, train_samples=train_samples, eval_samples=eval_samples
|
|
)
|
|
|
|
|
|
trainer.fit()
|
|
|