Spaces:
Sleeping
Sleeping
import os | |
import numpy as np | |
import gradio as gr | |
from sklearn.feature_extraction.text import TfidfVectorizer | |
from sklearn.metrics.pairwise import cosine_similarity | |
shanty=os.environ.get('SHANTY') | |
def compute_cosine_similarity(text1, text2): | |
# Initialize the TfidfVectorizer | |
tfidf_vectorizer = TfidfVectorizer() | |
# Fit and transform the texts | |
tfidf_matrix = tfidf_vectorizer.fit_transform([text1, text2]) | |
# Compute the cosine similarity | |
similarity_score = cosine_similarity(tfidf_matrix[0:1], tfidf_matrix[1:2]) | |
return similarity_score[0][0] | |
def text_similarity(text): | |
score= compute_cosine_similarity(shanty,text) | |
return score*100 | |
with gr.Blocks() as demo: | |
gr.Markdown("# Guess the lyrics of the sea shanty! \n ## Each two seconds of video represents a line") | |
video=gr.PlayableVideo("final_video.mp4") | |
inp=gr.Textbox(placeholder="Enter lyrics of sea shanty!",label="Prediction") | |
out=gr.Textbox(label="Your points") | |
inp.change(text_similarity,inp,out) | |
demo.launch(show_api=False) |