Spaces:
Build error
Build error
秋山翔
commited on
Commit
•
8941262
1
Parent(s):
449b632
FIX: limit image size to avoid exceeding CPU limit
Browse files
app.py
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
import os
|
|
|
2 |
import torch
|
3 |
import gradio as gr
|
4 |
import numpy as np
|
@@ -12,7 +13,7 @@ import logging
|
|
12 |
|
13 |
logger = logging.getLogger(__name__)
|
14 |
|
15 |
-
|
16 |
MODEL_PATH = "models"
|
17 |
COLOUR_MODEL = "RGB"
|
18 |
|
@@ -66,33 +67,40 @@ def get_model(style):
|
|
66 |
return shinkai_model
|
67 |
|
68 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
def inference(img, style):
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
logger.error(f"Error while processing image {img}")
|
96 |
|
97 |
|
98 |
title = "Anime Background GAN"
|
@@ -108,7 +116,10 @@ examples = [
|
|
108 |
gr.Interface(
|
109 |
fn=inference,
|
110 |
inputs=[
|
111 |
-
gr.inputs.Image(
|
|
|
|
|
|
|
112 |
gr.inputs.Dropdown(
|
113 |
STYLE_CHOICE_LIST,
|
114 |
type="value",
|
@@ -116,11 +127,14 @@ gr.Interface(
|
|
116 |
label="Style",
|
117 |
),
|
118 |
],
|
119 |
-
outputs=gr.outputs.Image(
|
|
|
|
|
|
|
120 |
title=title,
|
121 |
description=description,
|
122 |
article=article,
|
123 |
examples=examples,
|
124 |
allow_flagging="never",
|
125 |
allow_screenshot=False,
|
126 |
-
).launch(enable_queue=True
|
|
|
1 |
import os
|
2 |
+
import sys
|
3 |
import torch
|
4 |
import gradio as gr
|
5 |
import numpy as np
|
|
|
13 |
|
14 |
logger = logging.getLogger(__name__)
|
15 |
|
16 |
+
MAX_DIMENSION = 1280
|
17 |
MODEL_PATH = "models"
|
18 |
COLOUR_MODEL = "RGB"
|
19 |
|
|
|
67 |
return shinkai_model
|
68 |
|
69 |
|
70 |
+
def validate_image_size(img):
|
71 |
+
print(f"{img.height} x {img.width}")
|
72 |
+
if img.height > MAX_DIMENSION or img.width > MAX_DIMENSION:
|
73 |
+
raise RuntimeError(
|
74 |
+
"Image size is too large. Please use an image less than {MAX_DIMENSION}px on both width and height"
|
75 |
+
)
|
76 |
+
|
77 |
+
|
78 |
def inference(img, style):
|
79 |
+
validate_image_size(img)
|
80 |
+
|
81 |
+
# load image
|
82 |
+
input_image = img.convert(COLOUR_MODEL)
|
83 |
+
input_image = np.asarray(input_image)
|
84 |
+
# RGB -> BGR
|
85 |
+
input_image = input_image[:, :, [2, 1, 0]]
|
86 |
+
input_image = transforms.ToTensor()(input_image).unsqueeze(0)
|
87 |
+
# preprocess, (-1, 1)
|
88 |
+
input_image = -1 + 2 * input_image
|
89 |
+
|
90 |
+
if disable_gpu:
|
91 |
+
input_image = Variable(input_image).float()
|
92 |
+
else:
|
93 |
+
input_image = Variable(input_image).cuda()
|
94 |
+
|
95 |
+
# forward
|
96 |
+
model = get_model(style)
|
97 |
+
output_image = model(input_image)
|
98 |
+
output_image = output_image[0]
|
99 |
+
# BGR -> RGB
|
100 |
+
output_image = output_image[[2, 1, 0], :, :]
|
101 |
+
output_image = output_image.data.cpu().float() * 0.5 + 0.5
|
102 |
+
|
103 |
+
return transforms.ToPILImage()(output_image)
|
|
|
104 |
|
105 |
|
106 |
title = "Anime Background GAN"
|
|
|
116 |
gr.Interface(
|
117 |
fn=inference,
|
118 |
inputs=[
|
119 |
+
gr.inputs.Image(
|
120 |
+
type="pil",
|
121 |
+
label="Input Photo (less than 1280px on both width and height)",
|
122 |
+
),
|
123 |
gr.inputs.Dropdown(
|
124 |
STYLE_CHOICE_LIST,
|
125 |
type="value",
|
|
|
127 |
label="Style",
|
128 |
),
|
129 |
],
|
130 |
+
outputs=gr.outputs.Image(
|
131 |
+
type="pil",
|
132 |
+
label="Make sure to resize to less than 1280px on both width and height if an error occurrs!",
|
133 |
+
),
|
134 |
title=title,
|
135 |
description=description,
|
136 |
article=article,
|
137 |
examples=examples,
|
138 |
allow_flagging="never",
|
139 |
allow_screenshot=False,
|
140 |
+
).launch(enable_queue=True)
|