Spaces:
Build error
Build error
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
class Transformer(nn.Module): | |
def __init__(self): | |
super(Transformer, self).__init__() | |
# | |
self.refpad01_1 = nn.ReflectionPad2d(3) | |
self.conv01_1 = nn.Conv2d(3, 64, 7) | |
self.in01_1 = InstanceNormalization(64) | |
# relu | |
self.conv02_1 = nn.Conv2d(64, 128, 3, 2, 1) | |
self.conv02_2 = nn.Conv2d(128, 128, 3, 1, 1) | |
self.in02_1 = InstanceNormalization(128) | |
# relu | |
self.conv03_1 = nn.Conv2d(128, 256, 3, 2, 1) | |
self.conv03_2 = nn.Conv2d(256, 256, 3, 1, 1) | |
self.in03_1 = InstanceNormalization(256) | |
# relu | |
## res block 1 | |
self.refpad04_1 = nn.ReflectionPad2d(1) | |
self.conv04_1 = nn.Conv2d(256, 256, 3) | |
self.in04_1 = InstanceNormalization(256) | |
# relu | |
self.refpad04_2 = nn.ReflectionPad2d(1) | |
self.conv04_2 = nn.Conv2d(256, 256, 3) | |
self.in04_2 = InstanceNormalization(256) | |
# + input | |
## res block 2 | |
self.refpad05_1 = nn.ReflectionPad2d(1) | |
self.conv05_1 = nn.Conv2d(256, 256, 3) | |
self.in05_1 = InstanceNormalization(256) | |
# relu | |
self.refpad05_2 = nn.ReflectionPad2d(1) | |
self.conv05_2 = nn.Conv2d(256, 256, 3) | |
self.in05_2 = InstanceNormalization(256) | |
# + input | |
## res block 3 | |
self.refpad06_1 = nn.ReflectionPad2d(1) | |
self.conv06_1 = nn.Conv2d(256, 256, 3) | |
self.in06_1 = InstanceNormalization(256) | |
# relu | |
self.refpad06_2 = nn.ReflectionPad2d(1) | |
self.conv06_2 = nn.Conv2d(256, 256, 3) | |
self.in06_2 = InstanceNormalization(256) | |
# + input | |
## res block 4 | |
self.refpad07_1 = nn.ReflectionPad2d(1) | |
self.conv07_1 = nn.Conv2d(256, 256, 3) | |
self.in07_1 = InstanceNormalization(256) | |
# relu | |
self.refpad07_2 = nn.ReflectionPad2d(1) | |
self.conv07_2 = nn.Conv2d(256, 256, 3) | |
self.in07_2 = InstanceNormalization(256) | |
# + input | |
## res block 5 | |
self.refpad08_1 = nn.ReflectionPad2d(1) | |
self.conv08_1 = nn.Conv2d(256, 256, 3) | |
self.in08_1 = InstanceNormalization(256) | |
# relu | |
self.refpad08_2 = nn.ReflectionPad2d(1) | |
self.conv08_2 = nn.Conv2d(256, 256, 3) | |
self.in08_2 = InstanceNormalization(256) | |
# + input | |
## res block 6 | |
self.refpad09_1 = nn.ReflectionPad2d(1) | |
self.conv09_1 = nn.Conv2d(256, 256, 3) | |
self.in09_1 = InstanceNormalization(256) | |
# relu | |
self.refpad09_2 = nn.ReflectionPad2d(1) | |
self.conv09_2 = nn.Conv2d(256, 256, 3) | |
self.in09_2 = InstanceNormalization(256) | |
# + input | |
## res block 7 | |
self.refpad10_1 = nn.ReflectionPad2d(1) | |
self.conv10_1 = nn.Conv2d(256, 256, 3) | |
self.in10_1 = InstanceNormalization(256) | |
# relu | |
self.refpad10_2 = nn.ReflectionPad2d(1) | |
self.conv10_2 = nn.Conv2d(256, 256, 3) | |
self.in10_2 = InstanceNormalization(256) | |
# + input | |
## res block 8 | |
self.refpad11_1 = nn.ReflectionPad2d(1) | |
self.conv11_1 = nn.Conv2d(256, 256, 3) | |
self.in11_1 = InstanceNormalization(256) | |
# relu | |
self.refpad11_2 = nn.ReflectionPad2d(1) | |
self.conv11_2 = nn.Conv2d(256, 256, 3) | |
self.in11_2 = InstanceNormalization(256) | |
# + input | |
##------------------------------------## | |
self.deconv01_1 = nn.ConvTranspose2d(256, 128, 3, 2, 1, 1) | |
self.deconv01_2 = nn.Conv2d(128, 128, 3, 1, 1) | |
self.in12_1 = InstanceNormalization(128) | |
# relu | |
self.deconv02_1 = nn.ConvTranspose2d(128, 64, 3, 2, 1, 1) | |
self.deconv02_2 = nn.Conv2d(64, 64, 3, 1, 1) | |
self.in13_1 = InstanceNormalization(64) | |
# relu | |
self.refpad12_1 = nn.ReflectionPad2d(3) | |
self.deconv03_1 = nn.Conv2d(64, 3, 7) | |
# tanh | |
def forward(self, x): | |
y = F.relu(self.in01_1(self.conv01_1(self.refpad01_1(x)))) | |
y = F.relu(self.in02_1(self.conv02_2(self.conv02_1(y)))) | |
t04 = F.relu(self.in03_1(self.conv03_2(self.conv03_1(y)))) | |
## | |
y = F.relu(self.in04_1(self.conv04_1(self.refpad04_1(t04)))) | |
t05 = self.in04_2(self.conv04_2(self.refpad04_2(y))) + t04 | |
y = F.relu(self.in05_1(self.conv05_1(self.refpad05_1(t05)))) | |
t06 = self.in05_2(self.conv05_2(self.refpad05_2(y))) + t05 | |
y = F.relu(self.in06_1(self.conv06_1(self.refpad06_1(t06)))) | |
t07 = self.in06_2(self.conv06_2(self.refpad06_2(y))) + t06 | |
y = F.relu(self.in07_1(self.conv07_1(self.refpad07_1(t07)))) | |
t08 = self.in07_2(self.conv07_2(self.refpad07_2(y))) + t07 | |
y = F.relu(self.in08_1(self.conv08_1(self.refpad08_1(t08)))) | |
t09 = self.in08_2(self.conv08_2(self.refpad08_2(y))) + t08 | |
y = F.relu(self.in09_1(self.conv09_1(self.refpad09_1(t09)))) | |
t10 = self.in09_2(self.conv09_2(self.refpad09_2(y))) + t09 | |
y = F.relu(self.in10_1(self.conv10_1(self.refpad10_1(t10)))) | |
t11 = self.in10_2(self.conv10_2(self.refpad10_2(y))) + t10 | |
y = F.relu(self.in11_1(self.conv11_1(self.refpad11_1(t11)))) | |
y = self.in11_2(self.conv11_2(self.refpad11_2(y))) + t11 | |
## | |
y = F.relu(self.in12_1(self.deconv01_2(self.deconv01_1(y)))) | |
y = F.relu(self.in13_1(self.deconv02_2(self.deconv02_1(y)))) | |
y = F.tanh(self.deconv03_1(self.refpad12_1(y))) | |
return y | |
class InstanceNormalization(nn.Module): | |
def __init__(self, dim, eps=1e-9): | |
super(InstanceNormalization, self).__init__() | |
self.scale = nn.Parameter(torch.FloatTensor(dim)) | |
self.shift = nn.Parameter(torch.FloatTensor(dim)) | |
self.eps = eps | |
self._reset_parameters() | |
def _reset_parameters(self): | |
self.scale.data.uniform_() | |
self.shift.data.zero_() | |
def __call__(self, x): | |
n = x.size(2) * x.size(3) | |
t = x.view(x.size(0), x.size(1), n) | |
mean = torch.mean(t, 2).unsqueeze(2).unsqueeze(3).expand_as(x) | |
# Calculate the biased var. torch.var returns unbiased var | |
var = torch.var(t, 2).unsqueeze(2).unsqueeze(3).expand_as(x) * ( | |
(n - 1) / float(n) | |
) | |
scale_broadcast = self.scale.unsqueeze(1).unsqueeze(1).unsqueeze(0) | |
scale_broadcast = scale_broadcast.expand_as(x) | |
shift_broadcast = self.shift.unsqueeze(1).unsqueeze(1).unsqueeze(0) | |
shift_broadcast = shift_broadcast.expand_as(x) | |
out = (x - mean) / torch.sqrt(var + self.eps) | |
out = out * scale_broadcast + shift_broadcast | |
return out | |