Spaces:
Sleeping
Sleeping
Akis Giannoukos
commited on
Commit
·
497441d
1
Parent(s):
8991737
Added code
Browse files- README.md +263 -0
- app.py +512 -0
- requirements.txt +12 -0
README.md
CHANGED
|
@@ -11,3 +11,266 @@ short_description: MedGemma clinician chatbot demo (research prototype)
|
|
| 11 |
---
|
| 12 |
|
| 13 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
---
|
| 12 |
|
| 13 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
Technical Design Document: MedGemma-Based PHQ-9 Conversational Assessment Agent
|
| 17 |
+
1. Overview
|
| 18 |
+
|
| 19 |
+
1.1 Project Goal
|
| 20 |
+
|
| 21 |
+
The goal of this project is to develop an AI-driven clinician simulation agent that conducts natural conversations with patients to assess depression severity based on the PHQ-9 (Patient Health Questionnaire-9) scale. Unlike simple questionnaire bots, this system aims to infer a patient’s score implicitly through conversation and speech cues, mirroring a clinician’s behavior in real-world interviews.
|
| 22 |
+
|
| 23 |
+
1.2 Core Concept
|
| 24 |
+
|
| 25 |
+
The system will:
|
| 26 |
+
|
| 27 |
+
Engage the user in a realistic, adaptive dialogue (clinician-style questioning).
|
| 28 |
+
|
| 29 |
+
Continuously analyze textual and vocal features to estimate PHQ-9 category scores.
|
| 30 |
+
|
| 31 |
+
Stop automatically when confidence in all PHQ-9 items is sufficiently high.
|
| 32 |
+
|
| 33 |
+
Produce a final PHQ-9 severity report.
|
| 34 |
+
|
| 35 |
+
The system will use MedGemma-4B-IT (instruction-tuned medical LLM) as the base model for both:
|
| 36 |
+
|
| 37 |
+
-A Recording Agent (conversational component)
|
| 38 |
+
|
| 39 |
+
-A Scoring Agent (PHQ-9 inference component)
|
| 40 |
+
|
| 41 |
+
2. System Architecture
|
| 42 |
+
|
| 43 |
+
2.1 High-Level Components
|
| 44 |
+
Component Description
|
| 45 |
+
-Frontend Client: Handles user interaction, voice input/output, and UI display.
|
| 46 |
+
-Speech I/O Module: Converts speech to text (ASR) and text to speech (TTS).
|
| 47 |
+
-Feature Extraction Module: Extracts acoustic and prosodic features via OpenSmile for emotional/speech analysis.
|
| 48 |
+
-Recording Agent (Chatbot): Conducts clinician-like conversation with adaptive questioning.
|
| 49 |
+
-Scoring Agent: Evaluates PHQ-9 symptom probabilities after each exchange and determines confidence in final diagnosis.
|
| 50 |
+
Controller / Orchestrator: Manages communication between agents and triggers scoring cycles.
|
| 51 |
+
Model Backend: Hosts MedGemma-4B-IT, fine-tuned or prompted for clinician reasoning.
|
| 52 |
+
|
| 53 |
+
2.2 Architecture Diagram (Text Description)
|
| 54 |
+
┌───────────────────────┐
|
| 55 |
+
│ Frontend Client │
|
| 56 |
+
│ (Web / Desktop App) │
|
| 57 |
+
│ - Voice Input/Output │
|
| 58 |
+
│ - Text Display │
|
| 59 |
+
└─────────┬─────────────┘
|
| 60 |
+
│
|
| 61 |
+
(Audio stream)
|
| 62 |
+
│
|
| 63 |
+
┌───────────────────────┐
|
| 64 |
+
│ Speech I/O Module │
|
| 65 |
+
│ - ASR (Whisper) │
|
| 66 |
+
│ - TTS (e.g., Coqui) │
|
| 67 |
+
└─────────┬─────────────┘
|
| 68 |
+
│
|
| 69 |
+
▼
|
| 70 |
+
┌────────────────────────────┐
|
| 71 |
+
│ Feature Extraction Module │
|
| 72 |
+
│ - OpenSmile (prosody, pitch)│
|
| 73 |
+
└─────────┬──────────────────┘
|
| 74 |
+
│
|
| 75 |
+
▼
|
| 76 |
+
┌───────────────────────────────┐
|
| 77 |
+
│ Recording Agent (MedGemma) │
|
| 78 |
+
│ - Generates next question │
|
| 79 |
+
│ - Conversational context │
|
| 80 |
+
└─────────┬─────────────────────┘
|
| 81 |
+
│
|
| 82 |
+
▼
|
| 83 |
+
┌───────────────────────────────┐
|
| 84 |
+
│ Scoring Agent (MedGemma) │
|
| 85 |
+
│ - Maps text+voice features → │
|
| 86 |
+
│ PHQ-9 dimension confidences │
|
| 87 |
+
│ - Determines if assessment done│
|
| 88 |
+
└─────────┬─────────────────────┘
|
| 89 |
+
│
|
| 90 |
+
▼
|
| 91 |
+
┌───────────────────────────────┐
|
| 92 |
+
│ Controller / Orchestrator │
|
| 93 |
+
│ - Loop until confidence ≥ τ │
|
| 94 |
+
│ - Output PHQ-9 report │
|
| 95 |
+
└───────────────────────────────┘
|
| 96 |
+
|
| 97 |
+
3. Agent Design
|
| 98 |
+
|
| 99 |
+
3.1 Recording Agent
|
| 100 |
+
|
| 101 |
+
Role: Simulates a clinician conducting an empathetic, open-ended dialogue to elicit responses relevant to the PHQ-9 categories (mood, sleep, appetite, concentration, energy, self-worth, psychomotor changes, suicidal ideation).
|
| 102 |
+
|
| 103 |
+
Key Responsibilities:
|
| 104 |
+
|
| 105 |
+
Maintain conversational context.
|
| 106 |
+
|
| 107 |
+
Adapt follow-up questions based on inferred patient state.
|
| 108 |
+
|
| 109 |
+
Produce text responses using MedGemma-4B-IT with a clinician-style prompt template.
|
| 110 |
+
|
| 111 |
+
After each user response, trigger the Scoring Agent to reassess.
|
| 112 |
+
|
| 113 |
+
Prompt Skeleton Example:
|
| 114 |
+
|
| 115 |
+
System: You are a clinician conducting a conversational assessment to infer PHQ-9 symptoms without listing questions.
|
| 116 |
+
Keep tone empathetic, natural, and human.
|
| 117 |
+
User: [transcribed patient input]
|
| 118 |
+
Assistant: [clinician-style response / next question]
|
| 119 |
+
|
| 120 |
+
3.2 Scoring Agent
|
| 121 |
+
|
| 122 |
+
Role: Evaluates the ongoing conversation to infer a PHQ-9 score distribution and confidence values for each symptom.
|
| 123 |
+
|
| 124 |
+
Input:
|
| 125 |
+
|
| 126 |
+
Conversation transcript (all turns)
|
| 127 |
+
|
| 128 |
+
OpenSmile features (prosody, energy, speech rate)
|
| 129 |
+
|
| 130 |
+
Optional: timestamped emotional embeddings (via pretrained affect model)
|
| 131 |
+
|
| 132 |
+
Output:
|
| 133 |
+
|
| 134 |
+
Vector of 9 PHQ-9 scores (0–3)
|
| 135 |
+
|
| 136 |
+
Confidence scores per question
|
| 137 |
+
|
| 138 |
+
Overall depression severity classification (Minimal, Mild, Moderate, Moderately Severe, Severe)
|
| 139 |
+
|
| 140 |
+
Operation Flow:
|
| 141 |
+
|
| 142 |
+
Parse the full transcript and extract statements relevant to each PHQ-9 item.
|
| 143 |
+
|
| 144 |
+
Combine textual cues + acoustic cues.
|
| 145 |
+
|
| 146 |
+
Use MedGemma’s reasoning chain to map features to PHQ-9 scores.
|
| 147 |
+
|
| 148 |
+
When confidence for all ≥ threshold τ (e.g., 0.8), finalize results and signal termination.
|
| 149 |
+
|
| 150 |
+
4. Data Flow
|
| 151 |
+
|
| 152 |
+
User speaks → Audio captured.
|
| 153 |
+
|
| 154 |
+
ASR transcribes text.
|
| 155 |
+
|
| 156 |
+
OpenSmile extracts voice features.
|
| 157 |
+
|
| 158 |
+
Recording Agent uses transcript (and optionally summarized features) → next conversational message.
|
| 159 |
+
|
| 160 |
+
Scoring Agent evaluates cumulative context → PHQ-9 score vector + confidence.
|
| 161 |
+
|
| 162 |
+
If confidence < τ → continue conversation; else → output final diagnosis.
|
| 163 |
+
|
| 164 |
+
TTS module vocalizes clinician output.
|
| 165 |
+
|
| 166 |
+
5. Implementation Details
|
| 167 |
+
|
| 168 |
+
5.1 Models and Libraries
|
| 169 |
+
Function Tool / Library
|
| 170 |
+
Base LLM MedGemma-4B-IT (from Hugging Face)
|
| 171 |
+
Whisper
|
| 172 |
+
gTTS (preferrably), TTS Coqui TTS, gTTS, or Bark
|
| 173 |
+
Audio Features OpenSmile (IS09/ComParE configs)
|
| 174 |
+
Backend Python / FastAPI server
|
| 175 |
+
Frontend Gradio
|
| 176 |
+
Communication WebSocket or REST APIs
|
| 177 |
+
|
| 178 |
+
5.2 Confidence Computation
|
| 179 |
+
|
| 180 |
+
Each PHQ-9 item i has a confidence score ci ∈ [0,1].
|
| 181 |
+
|
| 182 |
+
ci estimated via secondary LLM reasoning (e.g., “How confident are you about this inference?”).
|
| 183 |
+
|
| 184 |
+
Global confidence C=minici.
|
| 185 |
+
|
| 186 |
+
Stop condition: C≥τ, e.g., 0.8.
|
| 187 |
+
|
| 188 |
+
5.3 Example API Workflow
|
| 189 |
+
|
| 190 |
+
POST /api/message
|
| 191 |
+
{
|
| 192 |
+
"audio": <base64 encoded>,
|
| 193 |
+
"transcript": "...",
|
| 194 |
+
"features": {...}
|
| 195 |
+
}
|
| 196 |
+
→
|
| 197 |
+
{
|
| 198 |
+
"agent_response": "...",
|
| 199 |
+
"phq9_scores": [1, 0, 2, ...],
|
| 200 |
+
"confidences": [0.9, 0.85, ...],
|
| 201 |
+
"finished": false
|
| 202 |
+
}
|
| 203 |
+
|
| 204 |
+
6. Training and Fine-Tuning (Future work, will not be implemented now as we do not have the data at the moment.)
|
| 205 |
+
|
| 206 |
+
Supervised Fine-Tuning (SFT) using synthetic dialogues labeled with PHQ-9 scores.
|
| 207 |
+
|
| 208 |
+
Speech-text alignment: fuse OpenSmile embeddings with conversation text embeddings before feeding to scoring prompts.
|
| 209 |
+
|
| 210 |
+
Possible multi-modal fusion via:
|
| 211 |
+
|
| 212 |
+
Feature concatenation → token embedding
|
| 213 |
+
|
| 214 |
+
or cross-attention adapter (if fine-tuning allowed).
|
| 215 |
+
|
| 216 |
+
7. Output Specification
|
| 217 |
+
|
| 218 |
+
Final Output:
|
| 219 |
+
|
| 220 |
+
{
|
| 221 |
+
"PHQ9_Scores": {
|
| 222 |
+
"interest": 2,
|
| 223 |
+
"mood": 3,
|
| 224 |
+
"sleep": 2,
|
| 225 |
+
"energy": 2,
|
| 226 |
+
"appetite": 1,
|
| 227 |
+
"self_worth": 2,
|
| 228 |
+
"concentration": 1,
|
| 229 |
+
"motor": 1,
|
| 230 |
+
"suicidal_thoughts": 0
|
| 231 |
+
},
|
| 232 |
+
"Total_Score": 14,
|
| 233 |
+
"Severity": "Moderate Depression",
|
| 234 |
+
"Confidence": 0.86
|
| 235 |
+
}
|
| 236 |
+
|
| 237 |
+
|
| 238 |
+
Displayed alongside a clinician-style summary:
|
| 239 |
+
|
| 240 |
+
“Based on our discussion, your responses suggest moderate depressive symptoms, with difficulties in mood and sleep being most prominent.”
|
| 241 |
+
|
| 242 |
+
8. Termination and Safety
|
| 243 |
+
|
| 244 |
+
The system will not offer therapy advice or emergency counseling.
|
| 245 |
+
|
| 246 |
+
If the patient mentions suicidal thoughts (item 9), the system:
|
| 247 |
+
|
| 248 |
+
Flags high risk,
|
| 249 |
+
|
| 250 |
+
Terminates the chat, and
|
| 251 |
+
|
| 252 |
+
Displays emergency contact information (e.g., “If you are in danger or need immediate help, call 988 in the U.S.”).
|
| 253 |
+
|
| 254 |
+
9. Future Extensions (Not implemented now)
|
| 255 |
+
|
| 256 |
+
Fine-tuned model jointly trained on PHQ-9 labeled conversations.
|
| 257 |
+
|
| 258 |
+
Multilingual support (via Whisper multilingual and TTS).
|
| 259 |
+
|
| 260 |
+
Confidence calibration using Bayesian reasoning or uncertainty quantification.
|
| 261 |
+
|
| 262 |
+
Integration with EHR systems for clinician verification.
|
| 263 |
+
|
| 264 |
+
10. Summary
|
| 265 |
+
|
| 266 |
+
This project creates an intelligent, conversational PHQ-9 assessment agent that blends:
|
| 267 |
+
|
| 268 |
+
The MedGemma-4B-IT medical LLM,
|
| 269 |
+
|
| 270 |
+
Audio emotion analysis with OpenSmile,
|
| 271 |
+
|
| 272 |
+
A dual-agent architecture for conversation and scoring,
|
| 273 |
+
|
| 274 |
+
and multimodal reasoning to deliver clinician-like mental health assessments.
|
| 275 |
+
|
| 276 |
+
The modular design enables local deployment on GPU servers, privacy-preserving operation, and future research extensions into multimodal diagnostic reasoning.
|
app.py
ADDED
|
@@ -0,0 +1,512 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import json
|
| 3 |
+
import re
|
| 4 |
+
import time
|
| 5 |
+
from typing import Any, Dict, List, Optional, Tuple
|
| 6 |
+
|
| 7 |
+
import gradio as gr
|
| 8 |
+
import numpy as np
|
| 9 |
+
|
| 10 |
+
# Audio processing
|
| 11 |
+
import soundfile as sf
|
| 12 |
+
import librosa
|
| 13 |
+
|
| 14 |
+
# Models
|
| 15 |
+
import torch
|
| 16 |
+
from transformers import (
|
| 17 |
+
AutoModelForCausalLM,
|
| 18 |
+
AutoTokenizer,
|
| 19 |
+
pipeline,
|
| 20 |
+
)
|
| 21 |
+
from gtts import gTTS
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
# ---------------------------
|
| 25 |
+
# Configuration
|
| 26 |
+
# ---------------------------
|
| 27 |
+
DEFAULT_CHAT_MODEL_ID = os.getenv("LLM_MODEL_ID", "TinyLlama/TinyLlama-1.1B-Chat-v1.0")
|
| 28 |
+
DEFAULT_ASR_MODEL_ID = os.getenv("ASR_MODEL_ID", "openai/whisper-tiny.en")
|
| 29 |
+
CONFIDENCE_THRESHOLD_DEFAULT = float(os.getenv("CONFIDENCE_THRESHOLD", "0.8"))
|
| 30 |
+
MAX_TURNS = int(os.getenv("MAX_TURNS", "12"))
|
| 31 |
+
USE_TTS_DEFAULT = os.getenv("USE_TTS", "false").strip().lower() == "true"
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
# ---------------------------
|
| 35 |
+
# Lazy singletons for pipelines
|
| 36 |
+
# ---------------------------
|
| 37 |
+
_asr_pipe = None
|
| 38 |
+
_gen_pipe = None
|
| 39 |
+
_tokenizer = None
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
def get_asr_pipeline():
|
| 43 |
+
global _asr_pipe
|
| 44 |
+
if _asr_pipe is None:
|
| 45 |
+
_asr_pipe = pipeline(
|
| 46 |
+
"automatic-speech-recognition",
|
| 47 |
+
model=DEFAULT_ASR_MODEL_ID,
|
| 48 |
+
device=-1,
|
| 49 |
+
)
|
| 50 |
+
return _asr_pipe
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
def get_textgen_pipeline():
|
| 54 |
+
global _gen_pipe
|
| 55 |
+
if _gen_pipe is None:
|
| 56 |
+
# Use a small default chat model for Spaces CPU; override via LLM_MODEL_ID
|
| 57 |
+
_gen_pipe = pipeline(
|
| 58 |
+
task="text-generation",
|
| 59 |
+
model=DEFAULT_CHAT_MODEL_ID,
|
| 60 |
+
tokenizer=DEFAULT_CHAT_MODEL_ID,
|
| 61 |
+
device=-1,
|
| 62 |
+
torch_dtype=torch.float32,
|
| 63 |
+
)
|
| 64 |
+
return _gen_pipe
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
# ---------------------------
|
| 68 |
+
# Utilities
|
| 69 |
+
# ---------------------------
|
| 70 |
+
def safe_json_extract(text: str) -> Optional[Dict[str, Any]]:
|
| 71 |
+
"""Extract first JSON object from text."""
|
| 72 |
+
if not text:
|
| 73 |
+
return None
|
| 74 |
+
try:
|
| 75 |
+
return json.loads(text)
|
| 76 |
+
except Exception:
|
| 77 |
+
pass
|
| 78 |
+
# Fallback: find the first {...} block
|
| 79 |
+
match = re.search(r"\{[\s\S]*\}", text)
|
| 80 |
+
if match:
|
| 81 |
+
try:
|
| 82 |
+
return json.loads(match.group(0))
|
| 83 |
+
except Exception:
|
| 84 |
+
return None
|
| 85 |
+
return None
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
def compute_audio_features(audio_path: str) -> Dict[str, float]:
|
| 89 |
+
"""Compute lightweight prosodic features as a proxy for OpenSMILE.
|
| 90 |
+
|
| 91 |
+
Returns a dictionary with summary statistics.
|
| 92 |
+
"""
|
| 93 |
+
try:
|
| 94 |
+
y, sr = librosa.load(audio_path, sr=16000, mono=True)
|
| 95 |
+
if len(y) == 0:
|
| 96 |
+
return {}
|
| 97 |
+
|
| 98 |
+
# Frame-based features
|
| 99 |
+
hop_length = 512
|
| 100 |
+
frame_length = 1024
|
| 101 |
+
|
| 102 |
+
rms = librosa.feature.rms(y=y, frame_length=frame_length, hop_length=hop_length)[0]
|
| 103 |
+
zcr = librosa.feature.zero_crossing_rate(y, frame_length=frame_length, hop_length=hop_length)[0]
|
| 104 |
+
centroid = librosa.feature.spectral_centroid(y=y, sr=sr, n_fft=2048, hop_length=hop_length)[0]
|
| 105 |
+
|
| 106 |
+
# Pitch estimation (coarse)
|
| 107 |
+
f0 = None
|
| 108 |
+
try:
|
| 109 |
+
f0 = librosa.yin(y, fmin=50, fmax=400, sr=sr, frame_length=frame_length, hop_length=hop_length)
|
| 110 |
+
f0 = f0[np.isfinite(f0)]
|
| 111 |
+
except Exception:
|
| 112 |
+
f0 = None
|
| 113 |
+
|
| 114 |
+
# Speaking rate rough proxy: voiced ratio per second
|
| 115 |
+
energy = librosa.feature.rms(y=y, frame_length=frame_length, hop_length=hop_length)[0]
|
| 116 |
+
voiced = energy > (np.median(energy) * 1.2)
|
| 117 |
+
voiced_ratio = float(np.mean(voiced))
|
| 118 |
+
|
| 119 |
+
features = {
|
| 120 |
+
"rms_mean": float(np.mean(rms)),
|
| 121 |
+
"rms_std": float(np.std(rms)),
|
| 122 |
+
"zcr_mean": float(np.mean(zcr)),
|
| 123 |
+
"zcr_std": float(np.std(zcr)),
|
| 124 |
+
"centroid_mean": float(np.mean(centroid)),
|
| 125 |
+
"centroid_std": float(np.std(centroid)),
|
| 126 |
+
"voiced_ratio": voiced_ratio,
|
| 127 |
+
"duration_sec": float(len(y) / sr),
|
| 128 |
+
}
|
| 129 |
+
if f0 is not None and f0.size > 0:
|
| 130 |
+
features.update({
|
| 131 |
+
"f0_median": float(np.median(f0)),
|
| 132 |
+
"f0_iqr": float(np.percentile(f0, 75) - np.percentile(f0, 25)),
|
| 133 |
+
})
|
| 134 |
+
return features
|
| 135 |
+
except Exception:
|
| 136 |
+
return {}
|
| 137 |
+
|
| 138 |
+
|
| 139 |
+
def synthesize_tts(text: Optional[str]) -> Optional[str]:
|
| 140 |
+
if not text:
|
| 141 |
+
return None
|
| 142 |
+
try:
|
| 143 |
+
# Save MP3 to tmp and return filepath
|
| 144 |
+
ts = int(time.time() * 1000)
|
| 145 |
+
out_path = f"/tmp/tts_{ts}.mp3"
|
| 146 |
+
tts = gTTS(text=text, lang="en")
|
| 147 |
+
tts.save(out_path)
|
| 148 |
+
return out_path
|
| 149 |
+
except Exception:
|
| 150 |
+
return None
|
| 151 |
+
|
| 152 |
+
|
| 153 |
+
def severity_from_total(total_score: int) -> str:
|
| 154 |
+
if total_score <= 4:
|
| 155 |
+
return "Minimal Depression"
|
| 156 |
+
if total_score <= 9:
|
| 157 |
+
return "Mild Depression"
|
| 158 |
+
if total_score <= 14:
|
| 159 |
+
return "Moderate Depression"
|
| 160 |
+
if total_score <= 19:
|
| 161 |
+
return "Moderately Severe Depression"
|
| 162 |
+
return "Severe Depression"
|
| 163 |
+
|
| 164 |
+
|
| 165 |
+
def transcript_to_text(chat_history: List[Tuple[str, str]]) -> str:
|
| 166 |
+
"""Convert chatbot history [(user, assistant), ...] to a plain text transcript."""
|
| 167 |
+
lines = []
|
| 168 |
+
for user, assistant in chat_history:
|
| 169 |
+
if user:
|
| 170 |
+
lines.append(f"Patient: {user}")
|
| 171 |
+
if assistant:
|
| 172 |
+
lines.append(f"Clinician: {assistant}")
|
| 173 |
+
return "\n".join(lines)
|
| 174 |
+
|
| 175 |
+
|
| 176 |
+
def generate_recording_agent_reply(chat_history: List[Tuple[str, str]]) -> str:
|
| 177 |
+
transcript = transcript_to_text(chat_history)
|
| 178 |
+
system_prompt = (
|
| 179 |
+
"You are a clinician conducting a conversational assessment to infer PHQ-9 symptoms "
|
| 180 |
+
"without listing the nine questions explicitly. Keep tone empathetic, natural, and human. "
|
| 181 |
+
"Ask one concise, natural follow-up question at a time that helps infer symptoms such as mood, "
|
| 182 |
+
"sleep, appetite, energy, concentration, self-worth, psychomotor changes, and suicidal thoughts."
|
| 183 |
+
)
|
| 184 |
+
user_prompt = (
|
| 185 |
+
"Conversation so far (Patient and Clinician turns):\n\n" + transcript +
|
| 186 |
+
"\n\nRespond with a single short clinician-style question for the patient."
|
| 187 |
+
)
|
| 188 |
+
pipe = get_textgen_pipeline()
|
| 189 |
+
out = pipe(
|
| 190 |
+
f"<|system|>\n{system_prompt}\n<|user|>\n{user_prompt}\n<|assistant|>",
|
| 191 |
+
max_new_tokens=128,
|
| 192 |
+
temperature=0.7,
|
| 193 |
+
do_sample=True,
|
| 194 |
+
pad_token_id=pipe.tokenizer.eos_token_id,
|
| 195 |
+
)[0]["generated_text"]
|
| 196 |
+
|
| 197 |
+
# Extract assistant content after the last assistant tag if present
|
| 198 |
+
reply = out.split("<|assistant|>")[-1].strip()
|
| 199 |
+
# Post-process to avoid trailing special tokens
|
| 200 |
+
reply = re.split(r"</s>|<\|endoftext\|>", reply)[0].strip()
|
| 201 |
+
# Ensure it's a single concise question/sentence
|
| 202 |
+
if len(reply) > 300:
|
| 203 |
+
reply = reply[:300].rstrip() + "…"
|
| 204 |
+
return reply
|
| 205 |
+
|
| 206 |
+
|
| 207 |
+
def scoring_agent_infer(chat_history: List[Tuple[str, str]], features: Dict[str, float]) -> Dict[str, Any]:
|
| 208 |
+
"""Ask the LLM to produce PHQ-9 scores and confidences as JSON. Fallback if parsing fails."""
|
| 209 |
+
transcript = transcript_to_text(chat_history)
|
| 210 |
+
features_json = json.dumps(features, ensure_ascii=False)
|
| 211 |
+
system_prompt = (
|
| 212 |
+
"You evaluate an on-going clinician-patient conversation to infer a PHQ-9 assessment. "
|
| 213 |
+
"Return ONLY a JSON object with: PHQ9_Scores (interest,mood,sleep,energy,appetite,self_worth,concentration,motor,suicidal_thoughts; each 0-3), "
|
| 214 |
+
"Confidences (list of 9 floats 0-1 in the same order), Total_Score (0-27), Severity (string), Confidence (min of confidences), "
|
| 215 |
+
"and High_Risk (boolean, true if any suicidal risk)."
|
| 216 |
+
)
|
| 217 |
+
user_prompt = (
|
| 218 |
+
"Conversation transcript:"\
|
| 219 |
+
f"\n{transcript}\n\n"
|
| 220 |
+
f"Acoustic features summary (approximate):\n{features_json}\n\n"
|
| 221 |
+
"Instructions: Infer PHQ9_Scores (0-3 per item), estimate Confidences per item, compute Total_Score and overall Severity. "
|
| 222 |
+
"Set High_Risk=true if any suicidal ideation or risk is present. Return ONLY JSON, no prose."
|
| 223 |
+
)
|
| 224 |
+
pipe = get_textgen_pipeline()
|
| 225 |
+
out = pipe(
|
| 226 |
+
f"<|system|>\n{system_prompt}\n<|user|>\n{user_prompt}\n<|assistant|>",
|
| 227 |
+
max_new_tokens=256,
|
| 228 |
+
temperature=0.2,
|
| 229 |
+
do_sample=True,
|
| 230 |
+
pad_token_id=pipe.tokenizer.eos_token_id,
|
| 231 |
+
)[0]["generated_text"]
|
| 232 |
+
parsed = safe_json_extract(out)
|
| 233 |
+
|
| 234 |
+
# Validate and coerce
|
| 235 |
+
if parsed is None or "PHQ9_Scores" not in parsed:
|
| 236 |
+
# Simple fallback heuristic: neutral scores with low confidence
|
| 237 |
+
scores = {
|
| 238 |
+
"interest": 1,
|
| 239 |
+
"mood": 1,
|
| 240 |
+
"sleep": 1,
|
| 241 |
+
"energy": 1,
|
| 242 |
+
"appetite": 1,
|
| 243 |
+
"self_worth": 1,
|
| 244 |
+
"concentration": 1,
|
| 245 |
+
"motor": 1,
|
| 246 |
+
"suicidal_thoughts": 0,
|
| 247 |
+
}
|
| 248 |
+
confidences = [0.5] * 9
|
| 249 |
+
total = int(sum(scores.values()))
|
| 250 |
+
return {
|
| 251 |
+
"PHQ9_Scores": scores,
|
| 252 |
+
"Confidences": confidences,
|
| 253 |
+
"Total_Score": total,
|
| 254 |
+
"Severity": severity_from_total(total),
|
| 255 |
+
"Confidence": float(min(confidences)),
|
| 256 |
+
"High_Risk": False,
|
| 257 |
+
}
|
| 258 |
+
|
| 259 |
+
try:
|
| 260 |
+
# Coerce types and compute derived values if missing
|
| 261 |
+
scores = parsed.get("PHQ9_Scores", {})
|
| 262 |
+
# Ensure all keys present
|
| 263 |
+
keys = [
|
| 264 |
+
"interest","mood","sleep","energy","appetite","self_worth","concentration","motor","suicidal_thoughts"
|
| 265 |
+
]
|
| 266 |
+
for k in keys:
|
| 267 |
+
scores[k] = int(max(0, min(3, int(scores.get(k, 0)))))
|
| 268 |
+
confidences = parsed.get("Confidences", [])
|
| 269 |
+
if not isinstance(confidences, list) or len(confidences) != 9:
|
| 270 |
+
confidences = [float(parsed.get("Confidence", 0.5))] * 9
|
| 271 |
+
confidences = [float(max(0.0, min(1.0, c))) for c in confidences]
|
| 272 |
+
total = int(sum(scores.values()))
|
| 273 |
+
severity = parsed.get("Severity") or severity_from_total(total)
|
| 274 |
+
overall_conf = float(parsed.get("Confidence", min(confidences)))
|
| 275 |
+
high_risk = bool(parsed.get("High_Risk", False)) or (scores.get("suicidal_thoughts", 0) >= 1)
|
| 276 |
+
|
| 277 |
+
return {
|
| 278 |
+
"PHQ9_Scores": scores,
|
| 279 |
+
"Confidences": confidences,
|
| 280 |
+
"Total_Score": total,
|
| 281 |
+
"Severity": severity,
|
| 282 |
+
"Confidence": overall_conf,
|
| 283 |
+
"High_Risk": high_risk,
|
| 284 |
+
}
|
| 285 |
+
except Exception:
|
| 286 |
+
# Final fallback
|
| 287 |
+
scores = parsed.get("PHQ9_Scores", {}) if isinstance(parsed, dict) else {}
|
| 288 |
+
if not scores:
|
| 289 |
+
scores = {k: 1 for k in [
|
| 290 |
+
"interest","mood","sleep","energy","appetite","self_worth","concentration","motor","suicidal_thoughts"
|
| 291 |
+
]}
|
| 292 |
+
confidences = [0.5] * 9
|
| 293 |
+
total = int(sum(scores.values()))
|
| 294 |
+
return {
|
| 295 |
+
"PHQ9_Scores": scores,
|
| 296 |
+
"Confidences": confidences,
|
| 297 |
+
"Total_Score": total,
|
| 298 |
+
"Severity": severity_from_total(total),
|
| 299 |
+
"Confidence": float(min(confidences)),
|
| 300 |
+
"High_Risk": False,
|
| 301 |
+
}
|
| 302 |
+
|
| 303 |
+
|
| 304 |
+
def transcribe_audio(audio_path: Optional[str]) -> str:
|
| 305 |
+
if not audio_path:
|
| 306 |
+
return ""
|
| 307 |
+
try:
|
| 308 |
+
asr = get_asr_pipeline()
|
| 309 |
+
result = asr(audio_path)
|
| 310 |
+
if isinstance(result, dict) and "text" in result:
|
| 311 |
+
return result["text"].strip()
|
| 312 |
+
if isinstance(result, list) and len(result) > 0 and "text" in result[0]:
|
| 313 |
+
return result[0]["text"].strip()
|
| 314 |
+
except Exception:
|
| 315 |
+
pass
|
| 316 |
+
return ""
|
| 317 |
+
|
| 318 |
+
|
| 319 |
+
# ---------------------------
|
| 320 |
+
# Gradio app logic
|
| 321 |
+
# ---------------------------
|
| 322 |
+
INTRO_MESSAGE = (
|
| 323 |
+
"Hello, I'm here to check in on how you've been feeling lately. "
|
| 324 |
+
"To start, can you share how your mood has been over the past couple of weeks?"
|
| 325 |
+
)
|
| 326 |
+
|
| 327 |
+
|
| 328 |
+
def init_state() -> Tuple[List[Tuple[str, str]], Dict[str, Any], Dict[str, Any], bool, int]:
|
| 329 |
+
chat_history: List[Tuple[str, str]] = [("", INTRO_MESSAGE)]
|
| 330 |
+
scores = {}
|
| 331 |
+
meta = {"Severity": None, "Total_Score": None, "Confidence": 0.0}
|
| 332 |
+
finished = False
|
| 333 |
+
turns = 0
|
| 334 |
+
return chat_history, scores, meta, finished, turns
|
| 335 |
+
|
| 336 |
+
|
| 337 |
+
def process_turn(
|
| 338 |
+
audio_path: Optional[str],
|
| 339 |
+
text_input: Optional[str],
|
| 340 |
+
chat_history: List[Tuple[str, str]],
|
| 341 |
+
threshold: float,
|
| 342 |
+
tts_enabled: bool,
|
| 343 |
+
finished: bool,
|
| 344 |
+
turns: int,
|
| 345 |
+
prev_scores: Dict[str, Any],
|
| 346 |
+
prev_meta: Dict[str, Any],
|
| 347 |
+
):
|
| 348 |
+
# If already finished, do nothing
|
| 349 |
+
if finished:
|
| 350 |
+
return (
|
| 351 |
+
chat_history,
|
| 352 |
+
{"info": "Assessment complete."},
|
| 353 |
+
prev_meta.get("Severity", ""),
|
| 354 |
+
finished,
|
| 355 |
+
turns,
|
| 356 |
+
None,
|
| 357 |
+
None,
|
| 358 |
+
None,
|
| 359 |
+
)
|
| 360 |
+
|
| 361 |
+
patient_text = (text_input or "").strip()
|
| 362 |
+
audio_features: Dict[str, float] = {}
|
| 363 |
+
if audio_path:
|
| 364 |
+
# Transcribe first
|
| 365 |
+
transcribed = transcribe_audio(audio_path)
|
| 366 |
+
if transcribed:
|
| 367 |
+
patient_text = (patient_text + " ").strip() + transcribed if patient_text else transcribed
|
| 368 |
+
# Extract features
|
| 369 |
+
audio_features = compute_audio_features(audio_path)
|
| 370 |
+
|
| 371 |
+
if not patient_text:
|
| 372 |
+
# Ask user for input
|
| 373 |
+
chat_history.append(("", "I didn't catch that. Could you share a bit about how you've been feeling?"))
|
| 374 |
+
return (
|
| 375 |
+
chat_history,
|
| 376 |
+
prev_scores or {},
|
| 377 |
+
prev_meta,
|
| 378 |
+
finished,
|
| 379 |
+
turns,
|
| 380 |
+
None,
|
| 381 |
+
None,
|
| 382 |
+
None,
|
| 383 |
+
)
|
| 384 |
+
|
| 385 |
+
# Add patient's message
|
| 386 |
+
chat_history.append((patient_text, None))
|
| 387 |
+
|
| 388 |
+
# Scoring agent
|
| 389 |
+
scoring = scoring_agent_infer(chat_history, audio_features)
|
| 390 |
+
scores = scoring.get("PHQ9_Scores", {})
|
| 391 |
+
confidences = scoring.get("Confidences", [])
|
| 392 |
+
total = scoring.get("Total_Score", 0)
|
| 393 |
+
severity = scoring.get("Severity", severity_from_total(total))
|
| 394 |
+
overall_conf = float(scoring.get("Confidence", min(confidences) if confidences else 0.0))
|
| 395 |
+
high_risk = bool(scoring.get("High_Risk", False))
|
| 396 |
+
|
| 397 |
+
meta = {"Severity": severity, "Total_Score": total, "Confidence": overall_conf}
|
| 398 |
+
|
| 399 |
+
# Termination conditions
|
| 400 |
+
min_conf = float(min(confidences)) if confidences else 0.0
|
| 401 |
+
turns += 1
|
| 402 |
+
done = high_risk or (min_conf >= threshold) or (turns >= MAX_TURNS)
|
| 403 |
+
|
| 404 |
+
if high_risk:
|
| 405 |
+
closing = (
|
| 406 |
+
"I’m concerned about your safety based on what you shared. "
|
| 407 |
+
"If you are in danger or need immediate help, please call 988 in the U.S. or your local emergency number. "
|
| 408 |
+
"I'll end the assessment now and display emergency resources."
|
| 409 |
+
)
|
| 410 |
+
chat_history[-1] = (chat_history[-1][0], closing)
|
| 411 |
+
finished = True
|
| 412 |
+
elif done:
|
| 413 |
+
summary = (
|
| 414 |
+
f"Thank you for sharing. Based on our conversation, your responses suggest {severity.lower()}. "
|
| 415 |
+
"We can stop here."
|
| 416 |
+
)
|
| 417 |
+
chat_history[-1] = (chat_history[-1][0], summary)
|
| 418 |
+
finished = True
|
| 419 |
+
else:
|
| 420 |
+
# Generate next clinician question
|
| 421 |
+
reply = generate_recording_agent_reply(chat_history)
|
| 422 |
+
chat_history[-1] = (chat_history[-1][0], reply)
|
| 423 |
+
|
| 424 |
+
# TTS for the latest clinician message, if enabled
|
| 425 |
+
tts_path = synthesize_tts(chat_history[-1][1]) if tts_enabled else None
|
| 426 |
+
|
| 427 |
+
# Build a compact JSON for display
|
| 428 |
+
display_json = {
|
| 429 |
+
"PHQ9_Scores": scores,
|
| 430 |
+
"Confidences": confidences,
|
| 431 |
+
"Total_Score": total,
|
| 432 |
+
"Severity": severity,
|
| 433 |
+
"Confidence": overall_conf,
|
| 434 |
+
"High_Risk": high_risk,
|
| 435 |
+
}
|
| 436 |
+
|
| 437 |
+
# Clear inputs after processing
|
| 438 |
+
return (
|
| 439 |
+
chat_history,
|
| 440 |
+
display_json,
|
| 441 |
+
severity,
|
| 442 |
+
finished,
|
| 443 |
+
turns,
|
| 444 |
+
None,
|
| 445 |
+
None,
|
| 446 |
+
tts_path,
|
| 447 |
+
)
|
| 448 |
+
|
| 449 |
+
|
| 450 |
+
def reset_app():
|
| 451 |
+
return init_state()
|
| 452 |
+
|
| 453 |
+
|
| 454 |
+
# ---------------------------
|
| 455 |
+
# UI
|
| 456 |
+
# ---------------------------
|
| 457 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
| 458 |
+
gr.Markdown(
|
| 459 |
+
"""
|
| 460 |
+
### PHQ-9 Conversational Clinician Agent
|
| 461 |
+
Engage in a brief, empathetic conversation. Your audio is transcribed, analyzed, and used to infer PHQ-9 scores.
|
| 462 |
+
The system stops when confidence is high enough or any safety risk is detected. It does not provide therapy or emergency counseling.
|
| 463 |
+
"""
|
| 464 |
+
)
|
| 465 |
+
|
| 466 |
+
with gr.Row():
|
| 467 |
+
chatbot = gr.Chatbot(height=400, type="tuples")
|
| 468 |
+
with gr.Column():
|
| 469 |
+
score_json = gr.JSON(label="PHQ-9 Assessment (live)")
|
| 470 |
+
severity_label = gr.Label(label="Severity")
|
| 471 |
+
threshold = gr.Slider(0.5, 1.0, value=CONFIDENCE_THRESHOLD_DEFAULT, step=0.05, label="Confidence Threshold (stop when min ≥ τ)")
|
| 472 |
+
tts_enable = gr.Checkbox(label="Speak clinician responses (TTS)", value=USE_TTS_DEFAULT)
|
| 473 |
+
tts_audio = gr.Audio(label="Clinician voice", interactive=False)
|
| 474 |
+
|
| 475 |
+
with gr.Row():
|
| 476 |
+
audio = gr.Audio(sources=["microphone"], type="filepath", label="Speak your response (or use text)")
|
| 477 |
+
text = gr.Textbox(lines=2, placeholder="Optional: type your response instead of audio")
|
| 478 |
+
|
| 479 |
+
with gr.Row():
|
| 480 |
+
send_btn = gr.Button("Send")
|
| 481 |
+
reset_btn = gr.Button("Reset")
|
| 482 |
+
|
| 483 |
+
# App state
|
| 484 |
+
chat_state = gr.State()
|
| 485 |
+
scores_state = gr.State()
|
| 486 |
+
meta_state = gr.State()
|
| 487 |
+
finished_state = gr.State()
|
| 488 |
+
turns_state = gr.State()
|
| 489 |
+
|
| 490 |
+
# Initialize on load
|
| 491 |
+
def _on_load():
|
| 492 |
+
return init_state()
|
| 493 |
+
|
| 494 |
+
demo.load(_on_load, inputs=None, outputs=[chatbot, scores_state, meta_state, finished_state, turns_state])
|
| 495 |
+
|
| 496 |
+
# Wire interactions
|
| 497 |
+
send_btn.click(
|
| 498 |
+
fn=process_turn,
|
| 499 |
+
inputs=[audio, text, chatbot, threshold, tts_enable, finished_state, turns_state, scores_state, meta_state],
|
| 500 |
+
outputs=[chatbot, score_json, severity_label, finished_state, turns_state, audio, text, tts_audio],
|
| 501 |
+
queue=True,
|
| 502 |
+
api_name="message",
|
| 503 |
+
)
|
| 504 |
+
|
| 505 |
+
reset_btn.click(fn=reset_app, inputs=None, outputs=[chatbot, scores_state, meta_state, finished_state, turns_state])
|
| 506 |
+
|
| 507 |
+
|
| 508 |
+
if __name__ == "__main__":
|
| 509 |
+
# For local dev
|
| 510 |
+
demo.queue(max_size=16).launch(server_name="0.0.0.0", server_port=int(os.getenv("PORT", "7860")))
|
| 511 |
+
|
| 512 |
+
|
requirements.txt
ADDED
|
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio>=4.44.0
|
| 2 |
+
transformers>=4.44.2
|
| 3 |
+
torch>=2.1.0
|
| 4 |
+
accelerate>=0.34.2
|
| 5 |
+
sentencepiece>=0.2.0
|
| 6 |
+
soundfile>=0.12.1
|
| 7 |
+
librosa>=0.10.2
|
| 8 |
+
numpy>=1.26.4
|
| 9 |
+
scipy>=1.11.4
|
| 10 |
+
protobuf>=4.25.3
|
| 11 |
+
gTTS>=2.5.3
|
| 12 |
+
|