Spaces:
Runtime error
Runtime error
akileshjayakumar
commited on
Commit
•
a6eeca1
1
Parent(s):
a188b31
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# from langchain.embeddings import OpenAIEmbeddings
|
2 |
+
import gradio as gr
|
3 |
+
from langchain_community.chat_models import ChatOpenAI
|
4 |
+
from langchain.chains import RetrievalQA
|
5 |
+
from langchain_openai import OpenAIEmbeddings
|
6 |
+
from langchain.vectorstores import Qdrant
|
7 |
+
from langchain.document_loaders import TextLoader
|
8 |
+
from langchain.text_splitter import CharacterTextSplitter
|
9 |
+
from qdrant_client.models import VectorParams, Distance
|
10 |
+
import os
|
11 |
+
from dotenv import load_dotenv
|
12 |
+
|
13 |
+
load_dotenv()
|
14 |
+
|
15 |
+
# Load your documents
|
16 |
+
loader = TextLoader("about_me.txt")
|
17 |
+
documents = loader.load()
|
18 |
+
|
19 |
+
# Split the documents into manageable chunks
|
20 |
+
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
|
21 |
+
docs = text_splitter.split_documents(documents)
|
22 |
+
|
23 |
+
# Embed the documents using OpenAI's embeddings
|
24 |
+
embeddings = OpenAIEmbeddings()
|
25 |
+
|
26 |
+
# Create the Qdrant vector store using connection parameters
|
27 |
+
vector_store = Qdrant.from_documents(
|
28 |
+
documents=docs,
|
29 |
+
embedding=embeddings,
|
30 |
+
url=os.getenv("QDRANT_URL"),
|
31 |
+
api_key=os.getenv("QDRANT_API_KEY"),
|
32 |
+
collection_name="akilesh_docs"
|
33 |
+
)
|
34 |
+
|
35 |
+
# Set up the OpenAI LLM
|
36 |
+
llm = ChatOpenAI(model_name="gpt-4")
|
37 |
+
|
38 |
+
# Assume vector_store is defined elsewhere, and create a retriever from it
|
39 |
+
retriever = vector_store.as_retriever()
|
40 |
+
|
41 |
+
# Create the RAG chain using the retriever
|
42 |
+
qa_chain = RetrievalQA.from_chain_type(
|
43 |
+
llm=llm,
|
44 |
+
chain_type="stuff",
|
45 |
+
retriever=retriever
|
46 |
+
)
|
47 |
+
|
48 |
+
print(qa_chain)
|
49 |
+
|
50 |
+
|
51 |
+
def respond(message):
|
52 |
+
# Generate the LLM response
|
53 |
+
result = qa_chain({"query": message})
|
54 |
+
response = result['result']
|
55 |
+
return response
|
56 |
+
|
57 |
+
|
58 |
+
def generate_answer(message: str, history: list) -> str:
|
59 |
+
# Get the new response from the LLM
|
60 |
+
new_response = respond(message)
|
61 |
+
return new_response
|
62 |
+
|
63 |
+
|
64 |
+
# Create the ChatInterface
|
65 |
+
demo = gr.ChatInterface(
|
66 |
+
fn=generate_answer, title="RAG App | Learn More About Me!", multimodal=False, retry_btn=None, undo_btn=None, clear_btn=None)
|
67 |
+
|
68 |
+
# Launch the Gradio interface
|
69 |
+
demo.launch()
|