akileshjayakumar's picture
refactor dir
252375c
raw
history blame
6.08 kB
import os
import uuid
import logging
from dotenv import load_dotenv
import json
import gradio as gr
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_core.messages import AIMessage, HumanMessage
from typing_extensions import TypedDict
from typing import Annotated
from langchain_core.messages import ToolMessage
from langgraph.graph import StateGraph, START, END
from langgraph.graph.message import add_messages
from langchain_openai import ChatOpenAI as Chat
from uuid import uuid4
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s [%(levelname)s] %(message)s",
)
logger = logging.getLogger(__name__)
# Load environment variables
load_dotenv()
# LangGraph setup
openai_api_key = os.getenv("OPENAI_API_KEY")
model = os.getenv("OPENAI_MODEL", "gpt-4")
temperature = float(os.getenv("OPENAI_TEMPERATURE", 0))
web_search = TavilySearchResults(max_results=2)
tools = [web_search]
class State(TypedDict):
messages: Annotated[list, add_messages]
graph_builder = StateGraph(State)
llm = Chat(
openai_api_key=openai_api_key,
model=model,
temperature=temperature
)
llm_with_tools = llm.bind_tools(tools)
def chatbot(state: State):
return {"messages": [llm_with_tools.invoke(state["messages"])]}
graph_builder.add_node("chatbot", chatbot)
class BasicToolNode:
"""A node that runs the tools requested in the last AIMessage."""
def __init__(self, tools: list) -> None:
self.tools_by_name = {tool.name: tool for tool in tools}
def __call__(self, inputs: dict):
if messages := inputs.get("messages", []):
message = messages[-1]
else:
raise ValueError("No message found in input")
outputs = []
for tool_call in message.tool_calls:
tool_result = self.tools_by_name[tool_call["name"]].invoke(
tool_call["args"]
)
outputs.append(
ToolMessage(
content=json.dumps(tool_result),
name=tool_call["name"],
tool_call_id=tool_call["id"],
)
)
return {"messages": outputs}
def route_tools(
state: State,
):
"""
Use in the conditional_edge to route to the ToolNode if the last message
has tool calls. Otherwise, route to the end.
"""
if isinstance(state, list):
ai_message = state[-1]
elif messages := state.get("messages", []):
ai_message = messages[-1]
else:
raise ValueError(
f"No messages found in input state to tool_edge: {state}")
if hasattr(ai_message, "tool_calls") and len(ai_message.tool_calls) > 0:
return "tools"
return END
tool_node = BasicToolNode(tools=[web_search])
graph_builder.add_node("tools", tool_node)
graph_builder.add_conditional_edges(
"chatbot",
route_tools,
# The following dictionary lets you tell the graph to interpret the condition's outputs as a specific node
# It defaults to the identity function, but if you
# want to use a node named something else apart from "tools",
# You can update the value of the dictionary to something else
# e.g., "tools": "my_tools"
{"tools": "tools", END: END},
)
# Any time a tool is called, we return to the chatbot to decide the next step
graph_builder.add_edge("tools", "chatbot")
graph_builder.add_edge(START, "chatbot")
def chatbot(state: State):
if not state["messages"]:
logger.info(
"Received an empty message list. Returning default response.")
return {"messages": [AIMessage(content="Hello! How can I assist you today?")]}
# Check for tool call in the last message
last_message = state["messages"][-1]
if not getattr(last_message, "tool_calls", None):
logger.info(
"No tool call in the last message. Proceeding without tool invocation.")
response = llm.invoke(state["messages"])
else:
logger.info(
"Tool call detected in the last message. Invoking tool response.")
response = llm_with_tools.invoke(state["messages"])
# Ensure the response is wrapped as AIMessage if it's not already
if not isinstance(response, AIMessage):
response = AIMessage(content=response.content)
return {"messages": [response]}
graph = graph_builder.compile()
def gradio_chat(message, history):
try:
if not isinstance(message, str):
message = str(message)
config = {
"configurable": {"thread_id": "1"},
"checkpoint_id": str(uuid4()),
"recursion_limit": 300
}
# Format the user message correctly as a HumanMessage
formatted_message = [HumanMessage(content=message)]
response = graph.invoke(
{
"messages": formatted_message
},
config=config,
stream_mode="values"
)
# Extract assistant messages and ensure they are AIMessage type
assistant_messages = [
msg for msg in response["messages"] if isinstance(msg, AIMessage)
]
last_message = assistant_messages[-1] if assistant_messages else AIMessage(
content="No response generated.")
logger.info("Sending response back to Gradio interface.")
return last_message.content
except Exception as e:
logger.error(f"Error encountered in gradio_chat: {e}")
return "Sorry, I encountered an error. Please try again."
with gr.Blocks(theme=gr.themes.Default()) as demo:
chatbot = gr.ChatInterface(
chatbot=gr.Chatbot(height=800, render=False),
fn=gradio_chat,
multimodal=False,
title="LangGraph Agentic Chatbot",
examples=[
"What's the weather like today?",
"Show me the Movie Trailer for Doctor Strange.",
"Give me the latest news on the COVID-19 pandemic.",
"What are the latest updtaes on NVIDIA's new GPU?",
],
)
if __name__ == "__main__":
demo.launch()