character-360 / pipeline.py
aki-0421
F: fix
cb40006 unverified
raw
history blame
5.66 kB
from typing import List
from PIL import Image
import numpy as np
import math
import random
import cv2
from typing import List
import torch
import einops
from pytorch_lightning import seed_everything
from transparent_background import Remover
from dataset.opencv_transforms.functional import to_tensor, center_crop
from vtdm.model import create_model
from vtdm.util import tensor2vid
remover = Remover(jit=False)
def pil_to_cv2(pil_image: Image.Image) -> np.ndarray:
cv_image = np.array(pil_image)
cv_image = cv2.cvtColor(cv_image, cv2.COLOR_RGB2BGR)
return cv_image
def prepare_white_image(input_image: Image.Image) -> Image.Image:
# remove bg
output = remover.process(input_image, type='rgba')
# expand image
width, height = output.size
max_side = max(width, height)
white_image = Image.new('RGBA', (max_side, max_side), (0, 0, 0, 0))
x_offset = (max_side - width) // 2
y_offset = (max_side - height) // 2
white_image.paste(output, (x_offset, y_offset))
return white_image
class MultiViewGenerator:
def __init__(self, checkpoint_path, config_path="inference.yaml"):
self.models = {}
denoising_model = create_model(config_path).cpu()
denoising_model.init_from_ckpt(checkpoint_path)
denoising_model = denoising_model.cuda().half()
self.models["denoising_model"] = denoising_model
def denoising(self, frames, args):
with torch.no_grad():
C, T, H, W = frames.shape
batch = {"video": frames.unsqueeze(0)}
batch["elevation"] = (
torch.Tensor([args["elevation"]]).to(torch.int64).to(frames.device)
)
batch["fps_id"] = torch.Tensor([7]).to(torch.int64).to(frames.device)
batch["motion_bucket_id"] = (
torch.Tensor([127]).to(torch.int64).to(frames.device)
)
batch = self.models["denoising_model"].add_custom_cond(batch, infer=True)
with torch.autocast(device_type="cuda", dtype=torch.float16):
c, uc = self.models[
"denoising_model"
].conditioner.get_unconditional_conditioning(
batch,
force_uc_zero_embeddings=["cond_frames", "cond_frames_without_noise"],
)
additional_model_inputs = {
"image_only_indicator": torch.zeros(2, T).to(
self.models["denoising_model"].device
),
"num_video_frames": batch["num_video_frames"],
}
def denoiser(input, sigma, c):
return self.models["denoising_model"].denoiser(
self.models["denoising_model"].model,
input,
sigma,
c,
**additional_model_inputs
)
with torch.autocast(device_type="cuda", dtype=torch.float16):
randn = torch.randn(
[T, 4, H // 8, W // 8], device=self.models["denoising_model"].device
)
samples = self.models["denoising_model"].sampler(denoiser, randn, cond=c, uc=uc)
samples = self.models["denoising_model"].decode_first_stage(samples.half())
samples = einops.rearrange(samples, "(b t) c h w -> b c t h w", t=T)
return tensor2vid(samples)
def video_pipeline(self, frames, args) -> List[Image.Image]:
num_iter = args["num_iter"]
out_list = []
for _ in range(num_iter):
with torch.no_grad():
results = self.denoising(frames, args)
if len(out_list) == 0:
out_list = out_list + results
else:
out_list = out_list + results[1:]
img = out_list[-1]
img = to_tensor(img)
img = (img - 0.5) * 2.0
frames[:, 0] = img
result = []
for i, frame in enumerate(out_list):
input_image = Image.fromarray(frame)
output_image = remover.process(input_image, type='rgba')
result.append(output_image)
return result
def process(self, white_image: Image.Image, args) -> List[Image.Image]:
img = pil_to_cv2(white_image)
frame_list = [img] * args["clip_size"]
h, w = frame_list[0].shape[0:2]
rate = max(
args["input_resolution"][0] * 1.0 / h, args["input_resolution"][1] * 1.0 / w
)
frame_list = [
cv2.resize(f, [math.ceil(w * rate), math.ceil(h * rate)]) for f in frame_list
]
frame_list = [
center_crop(f, [args["input_resolution"][0], args["input_resolution"][1]])
for f in frame_list
]
frame_list = [cv2.cvtColor(f, cv2.COLOR_BGR2RGB) for f in frame_list]
frame_list = [to_tensor(f) for f in frame_list]
frame_list = [(f - 0.5) * 2.0 for f in frame_list]
frames = torch.stack(frame_list, 1)
frames = frames.cuda()
self.models["denoising_model"].num_samples = args["clip_size"]
self.models["denoising_model"].image_size = args["input_resolution"]
return self.video_pipeline(frames, args)
def infer(self, white_image: Image.Image) -> List[Image.Image]:
seed = random.randint(0, 65535)
seed_everything(seed)
params = {
"clip_size": 25,
"input_resolution": [512, 512],
"num_iter": 1,
"aes": 6.0,
"mv": [0.0, 0.0, 0.0, 10.0],
"elevation": 0,
}
return self.process(white_image, params)