aki-0421
F: add
a3a3ae4 unverified
raw
history blame
8.18 kB
# -*- coding: utf-8 -*-
import math
import cv2
import numpy as np
def apply_min_size(sample, size, image_interpolation_method=cv2.INTER_AREA):
"""Rezise the sample to ensure the given size. Keeps aspect ratio.
Args:
sample (dict): sample
size (tuple): image size
Returns:
tuple: new size
"""
shape = list(sample['disparity'].shape)
if shape[0] >= size[0] and shape[1] >= size[1]:
return sample
scale = [0, 0]
scale[0] = size[0] / shape[0]
scale[1] = size[1] / shape[1]
scale = max(scale)
shape[0] = math.ceil(scale * shape[0])
shape[1] = math.ceil(scale * shape[1])
# resize
sample['image'] = cv2.resize(sample['image'],
tuple(shape[::-1]),
interpolation=image_interpolation_method)
sample['disparity'] = cv2.resize(sample['disparity'],
tuple(shape[::-1]),
interpolation=cv2.INTER_NEAREST)
sample['mask'] = cv2.resize(
sample['mask'].astype(np.float32),
tuple(shape[::-1]),
interpolation=cv2.INTER_NEAREST,
)
sample['mask'] = sample['mask'].astype(bool)
return tuple(shape)
class Resize(object):
"""Resize sample to given size (width, height).
"""
def __init__(
self,
width,
height,
resize_target=True,
keep_aspect_ratio=False,
ensure_multiple_of=1,
resize_method='lower_bound',
image_interpolation_method=cv2.INTER_AREA,
):
"""Init.
Args:
width (int): desired output width
height (int): desired output height
resize_target (bool, optional):
True: Resize the full sample (image, mask, target).
False: Resize image only.
Defaults to True.
keep_aspect_ratio (bool, optional):
True: Keep the aspect ratio of the input sample.
Output sample might not have the given width and height, and
resize behaviour depends on the parameter 'resize_method'.
Defaults to False.
ensure_multiple_of (int, optional):
Output width and height is constrained to be multiple of this parameter.
Defaults to 1.
resize_method (str, optional):
"lower_bound": Output will be at least as large as the given size.
"upper_bound": Output will be at max as large as the given size. "
"(Output size might be smaller than given size.)"
"minimal": Scale as least as possible. (Output size might be smaller than given size.)
Defaults to "lower_bound".
"""
self.__width = width
self.__height = height
self.__resize_target = resize_target
self.__keep_aspect_ratio = keep_aspect_ratio
self.__multiple_of = ensure_multiple_of
self.__resize_method = resize_method
self.__image_interpolation_method = image_interpolation_method
def constrain_to_multiple_of(self, x, min_val=0, max_val=None):
y = (np.round(x / self.__multiple_of) * self.__multiple_of).astype(int)
if max_val is not None and y > max_val:
y = (np.floor(x / self.__multiple_of) *
self.__multiple_of).astype(int)
if y < min_val:
y = (np.ceil(x / self.__multiple_of) *
self.__multiple_of).astype(int)
return y
def get_size(self, width, height):
# determine new height and width
scale_height = self.__height / height
scale_width = self.__width / width
if self.__keep_aspect_ratio:
if self.__resize_method == 'lower_bound':
# scale such that output size is lower bound
if scale_width > scale_height:
# fit width
scale_height = scale_width
else:
# fit height
scale_width = scale_height
elif self.__resize_method == 'upper_bound':
# scale such that output size is upper bound
if scale_width < scale_height:
# fit width
scale_height = scale_width
else:
# fit height
scale_width = scale_height
elif self.__resize_method == 'minimal':
# scale as least as possbile
if abs(1 - scale_width) < abs(1 - scale_height):
# fit width
scale_height = scale_width
else:
# fit height
scale_width = scale_height
else:
raise ValueError(
f'resize_method {self.__resize_method} not implemented')
if self.__resize_method == 'lower_bound':
new_height = self.constrain_to_multiple_of(scale_height * height,
min_val=self.__height)
new_width = self.constrain_to_multiple_of(scale_width * width,
min_val=self.__width)
elif self.__resize_method == 'upper_bound':
new_height = self.constrain_to_multiple_of(scale_height * height,
max_val=self.__height)
new_width = self.constrain_to_multiple_of(scale_width * width,
max_val=self.__width)
elif self.__resize_method == 'minimal':
new_height = self.constrain_to_multiple_of(scale_height * height)
new_width = self.constrain_to_multiple_of(scale_width * width)
else:
raise ValueError(
f'resize_method {self.__resize_method} not implemented')
return (new_width, new_height)
def __call__(self, sample):
width, height = self.get_size(sample['image'].shape[1],
sample['image'].shape[0])
# resize sample
sample['image'] = cv2.resize(
sample['image'],
(width, height),
interpolation=self.__image_interpolation_method,
)
if self.__resize_target:
if 'disparity' in sample:
sample['disparity'] = cv2.resize(
sample['disparity'],
(width, height),
interpolation=cv2.INTER_NEAREST,
)
if 'depth' in sample:
sample['depth'] = cv2.resize(sample['depth'], (width, height),
interpolation=cv2.INTER_NEAREST)
sample['mask'] = cv2.resize(
sample['mask'].astype(np.float32),
(width, height),
interpolation=cv2.INTER_NEAREST,
)
sample['mask'] = sample['mask'].astype(bool)
return sample
class NormalizeImage(object):
"""Normlize image by given mean and std.
"""
def __init__(self, mean, std):
self.__mean = mean
self.__std = std
def __call__(self, sample):
sample['image'] = (sample['image'] - self.__mean) / self.__std
return sample
class PrepareForNet(object):
"""Prepare sample for usage as network input.
"""
def __init__(self):
pass
def __call__(self, sample):
image = np.transpose(sample['image'], (2, 0, 1))
sample['image'] = np.ascontiguousarray(image).astype(np.float32)
if 'mask' in sample:
sample['mask'] = sample['mask'].astype(np.float32)
sample['mask'] = np.ascontiguousarray(sample['mask'])
if 'disparity' in sample:
disparity = sample['disparity'].astype(np.float32)
sample['disparity'] = np.ascontiguousarray(disparity)
if 'depth' in sample:
depth = sample['depth'].astype(np.float32)
sample['depth'] = np.ascontiguousarray(depth)
return sample