character-360 / annotator /midas /midas_net_custom.py
aki-0421
F: add
a3a3ae4 unverified
raw
history blame
6.02 kB
# -*- coding: utf-8 -*-
"""MidashNet: Network for monocular depth estimation trained by mixing several datasets.
This file contains code that is adapted from
https://github.com/thomasjpfan/pytorch_refinenet/blob/master/pytorch_refinenet/refinenet/refinenet_4cascade.py
"""
import torch
import torch.nn as nn
from .base_model import BaseModel
from .blocks import FeatureFusionBlock_custom, Interpolate, _make_encoder
class MidasNet_small(BaseModel):
"""Network for monocular depth estimation.
"""
def __init__(self,
path=None,
features=64,
backbone='efficientnet_lite3',
non_negative=True,
exportable=True,
channels_last=False,
align_corners=True,
blocks={'expand': True}):
"""Init.
Args:
path (str, optional): Path to saved model. Defaults to None.
features (int, optional): Number of features. Defaults to 256.
backbone (str, optional): Backbone network for encoder. Defaults to resnet50
"""
print('Loading weights: ', path)
super(MidasNet_small, self).__init__()
use_pretrained = False if path else True
self.channels_last = channels_last
self.blocks = blocks
self.backbone = backbone
self.groups = 1
features1 = features
features2 = features
features3 = features
features4 = features
self.expand = False
if 'expand' in self.blocks and self.blocks['expand'] is True:
self.expand = True
features1 = features
features2 = features * 2
features3 = features * 4
features4 = features * 8
self.pretrained, self.scratch = _make_encoder(self.backbone,
features,
use_pretrained,
groups=self.groups,
expand=self.expand,
exportable=exportable)
self.scratch.activation = nn.ReLU(False)
self.scratch.refinenet4 = FeatureFusionBlock_custom(
features4,
self.scratch.activation,
deconv=False,
bn=False,
expand=self.expand,
align_corners=align_corners)
self.scratch.refinenet3 = FeatureFusionBlock_custom(
features3,
self.scratch.activation,
deconv=False,
bn=False,
expand=self.expand,
align_corners=align_corners)
self.scratch.refinenet2 = FeatureFusionBlock_custom(
features2,
self.scratch.activation,
deconv=False,
bn=False,
expand=self.expand,
align_corners=align_corners)
self.scratch.refinenet1 = FeatureFusionBlock_custom(
features1,
self.scratch.activation,
deconv=False,
bn=False,
align_corners=align_corners)
self.scratch.output_conv = nn.Sequential(
nn.Conv2d(features,
features // 2,
kernel_size=3,
stride=1,
padding=1,
groups=self.groups),
Interpolate(scale_factor=2, mode='bilinear'),
nn.Conv2d(features // 2, 32, kernel_size=3, stride=1, padding=1),
self.scratch.activation,
nn.Conv2d(32, 1, kernel_size=1, stride=1, padding=0),
nn.ReLU(True) if non_negative else nn.Identity(),
nn.Identity(),
)
if path:
self.load(path)
def forward(self, x):
"""Forward pass.
Args:
x (tensor): input data (image)
Returns:
tensor: depth
"""
if self.channels_last is True:
print('self.channels_last = ', self.channels_last)
x.contiguous(memory_format=torch.channels_last)
layer_1 = self.pretrained.layer1(x)
layer_2 = self.pretrained.layer2(layer_1)
layer_3 = self.pretrained.layer3(layer_2)
layer_4 = self.pretrained.layer4(layer_3)
layer_1_rn = self.scratch.layer1_rn(layer_1)
layer_2_rn = self.scratch.layer2_rn(layer_2)
layer_3_rn = self.scratch.layer3_rn(layer_3)
layer_4_rn = self.scratch.layer4_rn(layer_4)
path_4 = self.scratch.refinenet4(layer_4_rn)
path_3 = self.scratch.refinenet3(path_4, layer_3_rn)
path_2 = self.scratch.refinenet2(path_3, layer_2_rn)
path_1 = self.scratch.refinenet1(path_2, layer_1_rn)
out = self.scratch.output_conv(path_1)
return torch.squeeze(out, dim=1)
def fuse_model(m):
prev_previous_type = nn.Identity()
prev_previous_name = ''
previous_type = nn.Identity()
previous_name = ''
for name, module in m.named_modules():
if prev_previous_type == nn.Conv2d and previous_type == nn.BatchNorm2d and type(
module) == nn.ReLU:
# print("FUSED ", prev_previous_name, previous_name, name)
torch.quantization.fuse_modules(
m, [prev_previous_name, previous_name, name], inplace=True)
elif prev_previous_type == nn.Conv2d and previous_type == nn.BatchNorm2d:
# print("FUSED ", prev_previous_name, previous_name)
torch.quantization.fuse_modules(
m, [prev_previous_name, previous_name], inplace=True)
# elif previous_type == nn.Conv2d and type(module) == nn.ReLU:
# print("FUSED ", previous_name, name)
# torch.quantization.fuse_modules(m, [previous_name, name], inplace=True)
prev_previous_type = previous_type
prev_previous_name = previous_name
previous_type = type(module)
previous_name = name