|  | import gradio as gr | 
					
						
						|  | import pandas as pd | 
					
						
						|  | import os | 
					
						
						|  | import matplotlib.pyplot as plt | 
					
						
						|  | import io | 
					
						
						|  | from PIL import Image | 
					
						
						|  | import base64 | 
					
						
						|  | import re | 
					
						
						|  | import numpy as np | 
					
						
						|  | from llama_index.llms.groq import Groq | 
					
						
						|  | from llama_index.core.query_pipeline import ( | 
					
						
						|  | QueryPipeline as QP, | 
					
						
						|  | Link, | 
					
						
						|  | InputComponent, | 
					
						
						|  | ) | 
					
						
						|  | from llama_index.experimental.query_engine.pandas import ( | 
					
						
						|  | PandasInstructionParser, | 
					
						
						|  | ) | 
					
						
						|  | from llama_index.core import PromptTemplate | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | EXAMPLE_DATASETS = { | 
					
						
						|  | "Hotel Bookings": "hotel_bookings.csv", | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  | def load_dataframe(file_path): | 
					
						
						|  | try: | 
					
						
						|  | if isinstance(file_path, str): | 
					
						
						|  |  | 
					
						
						|  | df = pd.read_csv(file_path) | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  | df = pd.read_csv(file_path.name) | 
					
						
						|  | return df, f"Successfully loaded dataset with {df.shape[0]} rows and {df.shape[1]} columns." | 
					
						
						|  | except Exception as e: | 
					
						
						|  | return None, f"Error loading dataset: {str(e)}" | 
					
						
						|  |  | 
					
						
						|  | def create_query_pipeline(df, api_key, model="llama-3.3-70b-versatile"): | 
					
						
						|  |  | 
					
						
						|  | try: | 
					
						
						|  | llm = Groq(model=model, api_key=api_key) | 
					
						
						|  | except Exception as e: | 
					
						
						|  | return None, f"Error initializing Groq LLM: {str(e)}" | 
					
						
						|  |  | 
					
						
						|  | instruction_str = ( | 
					
						
						|  | "1. Convert the query to executable Python code using Pandas.\n" | 
					
						
						|  | "2. The final line of code should be a Python expression that can be called with the `eval()` function.\n" | 
					
						
						|  | "3. The code should represent a solution to the query.\n" | 
					
						
						|  | "4. PRINT ONLY THE EXPRESSION.\n" | 
					
						
						|  | "5. Do not quote the expression.\n" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | pandas_prompt_str = ( | 
					
						
						|  | "You are working with a pandas dataframe in Python.\n" | 
					
						
						|  | "The name of the dataframe is `df`.\n" | 
					
						
						|  | "This is the result of `print(df.head())`:\n" | 
					
						
						|  | "{df_str}\n\n" | 
					
						
						|  | "Follow these instructions:\n" | 
					
						
						|  | "{instruction_str}\n" | 
					
						
						|  | "Query: {query_str}\n\n" | 
					
						
						|  | "Expression:" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | response_synthesis_prompt_str = ( | 
					
						
						|  | "Given an input question, synthesize a response from the query results.\n" | 
					
						
						|  | "Query: {query_str}\n\n" | 
					
						
						|  | "Pandas Instructions (optional):\n{pandas_instructions}\n\n" | 
					
						
						|  | "Pandas Output: {pandas_output}\n\n" | 
					
						
						|  | "Response: " | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | pandas_prompt = PromptTemplate(pandas_prompt_str).partial_format( | 
					
						
						|  | instruction_str=instruction_str, df_str=df.head(5) | 
					
						
						|  | ) | 
					
						
						|  | pandas_output_parser = PandasInstructionParser(df) | 
					
						
						|  | response_synthesis_prompt = PromptTemplate(response_synthesis_prompt_str) | 
					
						
						|  |  | 
					
						
						|  | qp = QP( | 
					
						
						|  | modules={ | 
					
						
						|  | "input": InputComponent(), | 
					
						
						|  | "pandas_prompt": pandas_prompt, | 
					
						
						|  | "llm1": llm, | 
					
						
						|  | "pandas_output_parser": pandas_output_parser, | 
					
						
						|  | "response_synthesis_prompt": response_synthesis_prompt, | 
					
						
						|  | "llm2": llm, | 
					
						
						|  | }, | 
					
						
						|  | verbose=True, | 
					
						
						|  | ) | 
					
						
						|  | qp.add_chain(["input", "pandas_prompt", "llm1", "pandas_output_parser"]) | 
					
						
						|  | qp.add_links( | 
					
						
						|  | [ | 
					
						
						|  | Link("input", "response_synthesis_prompt", dest_key="query_str"), | 
					
						
						|  | Link( | 
					
						
						|  | "llm1", "response_synthesis_prompt", dest_key="pandas_instructions" | 
					
						
						|  | ), | 
					
						
						|  | Link( | 
					
						
						|  | "pandas_output_parser", | 
					
						
						|  | "response_synthesis_prompt", | 
					
						
						|  | dest_key="pandas_output", | 
					
						
						|  | ), | 
					
						
						|  | ] | 
					
						
						|  | ) | 
					
						
						|  | qp.add_link("response_synthesis_prompt", "llm2") | 
					
						
						|  |  | 
					
						
						|  | return qp, "Query pipeline created successfully!" | 
					
						
						|  |  | 
					
						
						|  | def enhance_visualization(df, query): | 
					
						
						|  | """ | 
					
						
						|  | Create an enhanced visualization based on the dataframe and query | 
					
						
						|  | This function attempts to create a better visualization with proper labels and formatting | 
					
						
						|  | """ | 
					
						
						|  | try: | 
					
						
						|  |  | 
					
						
						|  | plt.close('all') | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | plt.figure(figsize=(12, 8), dpi=100) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if any(term in query.lower() for term in ['trend', 'time', 'year', 'month', 'booking', 'reservation']): | 
					
						
						|  |  | 
					
						
						|  | date_cols = [col for col in df.columns if any(term in col.lower() for term in | 
					
						
						|  | ['date', 'year', 'month', 'time', 'arrival', 'reservation'])] | 
					
						
						|  |  | 
					
						
						|  | if 'arrival_date_year' in df.columns and 'arrival_date_month' in df.columns: | 
					
						
						|  | try: | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | month_order = { | 
					
						
						|  | 'January': 1, 'February': 2, 'March': 3, 'April': 4, 'May': 5, 'June': 6, | 
					
						
						|  | 'July': 7, 'August': 8, 'September': 9, 'October': 10, 'November': 11, 'December': 12 | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | booking_counts = df.groupby(['arrival_date_year', 'arrival_date_month']).size().reset_index(name='count') | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | booking_counts['month_order'] = booking_counts['arrival_date_month'].map(month_order) | 
					
						
						|  | booking_counts = booking_counts.sort_values(['arrival_date_year', 'month_order']) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | pivot_data = booking_counts.pivot(index='arrival_date_year', columns='arrival_date_month', values='count') | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | months = sorted(booking_counts['arrival_date_month'].unique(), key=lambda x: month_order.get(x, 13)) | 
					
						
						|  |  | 
					
						
						|  | if len(months) > 0: | 
					
						
						|  | pivot_data = pivot_data[months] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | ax = pivot_data.plot(kind='bar', figsize=(14, 8), width=0.8) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | plt.title('Bookings by Month and Year', fontsize=16) | 
					
						
						|  | plt.xlabel('Year', fontsize=14) | 
					
						
						|  | plt.ylabel('Number of Bookings', fontsize=14) | 
					
						
						|  | plt.legend(title='Month', fontsize=12) | 
					
						
						|  | plt.grid(axis='y', linestyle='--', alpha=0.7) | 
					
						
						|  | plt.tight_layout() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | for container in ax.containers: | 
					
						
						|  | ax.bar_label(container, fontsize=9, fmt='%d') | 
					
						
						|  | else: | 
					
						
						|  | return None | 
					
						
						|  | except Exception as e: | 
					
						
						|  | print(f"Error in time visualization: {str(e)}") | 
					
						
						|  | return None | 
					
						
						|  |  | 
					
						
						|  | elif len(date_cols) > 0 and any(col in df.columns for col in date_cols): | 
					
						
						|  | try: | 
					
						
						|  |  | 
					
						
						|  | date_col = [col for col in date_cols if col in df.columns][0] | 
					
						
						|  | df_count = df.groupby(date_col).size().reset_index(name='count') | 
					
						
						|  |  | 
					
						
						|  | plt.bar(df_count[date_col], df_count['count'], color='steelblue') | 
					
						
						|  | plt.title(f'Distribution by {date_col}', fontsize=16) | 
					
						
						|  | plt.xlabel(date_col, fontsize=14) | 
					
						
						|  | plt.ylabel('Count', fontsize=14) | 
					
						
						|  | plt.grid(axis='y', linestyle='--', alpha=0.7) | 
					
						
						|  | plt.xticks(rotation=45) | 
					
						
						|  | plt.tight_layout() | 
					
						
						|  | except Exception as e: | 
					
						
						|  | print(f"Error in date column visualization: {str(e)}") | 
					
						
						|  | return None | 
					
						
						|  |  | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  | return None | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | elif any(term in query.lower() for term in ['distribution', 'histogram', 'spread']): | 
					
						
						|  | try: | 
					
						
						|  | numeric_cols = df.select_dtypes(include=['number']).columns.tolist() | 
					
						
						|  | if len(numeric_cols) > 0: | 
					
						
						|  |  | 
					
						
						|  | target_col = None | 
					
						
						|  | for col in numeric_cols: | 
					
						
						|  | if col.lower() in query.lower(): | 
					
						
						|  | target_col = col | 
					
						
						|  | break | 
					
						
						|  |  | 
					
						
						|  | if target_col is None and numeric_cols: | 
					
						
						|  | target_col = numeric_cols[0] | 
					
						
						|  |  | 
					
						
						|  | if target_col: | 
					
						
						|  |  | 
					
						
						|  | plt.hist(df[target_col].dropna(), bins=30, color='steelblue', edgecolor='black', alpha=0.7) | 
					
						
						|  | plt.title(f'Distribution of {target_col}', fontsize=16) | 
					
						
						|  | plt.xlabel(target_col, fontsize=14) | 
					
						
						|  | plt.ylabel('Frequency', fontsize=14) | 
					
						
						|  | plt.grid(axis='y', linestyle='--', alpha=0.7) | 
					
						
						|  | plt.tight_layout() | 
					
						
						|  | else: | 
					
						
						|  | return None | 
					
						
						|  | else: | 
					
						
						|  | return None | 
					
						
						|  | except Exception as e: | 
					
						
						|  | print(f"Error in distribution visualization: {str(e)}") | 
					
						
						|  | return None | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | elif any(term in query.lower() for term in ['compare', 'comparison', 'versus', 'vs', 'most', 'least']): | 
					
						
						|  | try: | 
					
						
						|  | categorical_cols = df.select_dtypes(include=['object']).columns.tolist() | 
					
						
						|  | if len(categorical_cols) > 0: | 
					
						
						|  |  | 
					
						
						|  | target_col = None | 
					
						
						|  | for col in categorical_cols: | 
					
						
						|  | if col.lower() in query.lower(): | 
					
						
						|  | target_col = col | 
					
						
						|  | break | 
					
						
						|  |  | 
					
						
						|  | if target_col is None and categorical_cols: | 
					
						
						|  | target_col = categorical_cols[0] | 
					
						
						|  |  | 
					
						
						|  | if target_col: | 
					
						
						|  |  | 
					
						
						|  | top_categories = df[target_col].value_counts().nlargest(10) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | plt.bar(top_categories.index, top_categories.values, color='steelblue') | 
					
						
						|  | plt.title(f'Top Categories by {target_col}', fontsize=16) | 
					
						
						|  | plt.xlabel(target_col, fontsize=14) | 
					
						
						|  | plt.ylabel('Count', fontsize=14) | 
					
						
						|  | plt.grid(axis='y', linestyle='--', alpha=0.7) | 
					
						
						|  | plt.xticks(rotation=45, ha='right') | 
					
						
						|  | plt.tight_layout() | 
					
						
						|  | else: | 
					
						
						|  | return None | 
					
						
						|  | else: | 
					
						
						|  | return None | 
					
						
						|  | except Exception as e: | 
					
						
						|  | print(f"Error in comparison visualization: {str(e)}") | 
					
						
						|  | return None | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  | return None | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | buf = io.BytesIO() | 
					
						
						|  | plt.savefig(buf, format='png') | 
					
						
						|  | buf.seek(0) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | img = Image.open(buf) | 
					
						
						|  | plt.close('all') | 
					
						
						|  |  | 
					
						
						|  | return img | 
					
						
						|  | except Exception as e: | 
					
						
						|  | print(f"Error in enhance_visualization: {str(e)}") | 
					
						
						|  | plt.close('all') | 
					
						
						|  | return None | 
					
						
						|  |  | 
					
						
						|  | def process_query(query, api_key, df, model_choice): | 
					
						
						|  | if df is None: | 
					
						
						|  | return "Please load a dataset first.", None | 
					
						
						|  |  | 
					
						
						|  | if not api_key: | 
					
						
						|  | return "Please provide your Groq API key.", None | 
					
						
						|  |  | 
					
						
						|  | try: | 
					
						
						|  |  | 
					
						
						|  | enhanced_img = enhance_visualization(df, query) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | pipeline, message = create_query_pipeline(df, api_key, model_choice) | 
					
						
						|  | if pipeline is None: | 
					
						
						|  | return message, None | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | response = pipeline.run(query_str=query) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if enhanced_img is not None: | 
					
						
						|  | return response.message.content, enhanced_img | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | figures = plt.get_fignums() | 
					
						
						|  |  | 
					
						
						|  | if figures: | 
					
						
						|  | try: | 
					
						
						|  |  | 
					
						
						|  | fig = plt.figure(figures[0]) | 
					
						
						|  | axes = fig.axes | 
					
						
						|  |  | 
					
						
						|  | if axes and len(axes) > 0: | 
					
						
						|  | ax = axes[0] | 
					
						
						|  |  | 
					
						
						|  | ax.grid(axis='y', linestyle='--', alpha=0.7) | 
					
						
						|  |  | 
					
						
						|  | if ax.get_title(): | 
					
						
						|  | ax.set_title(ax.get_title(), fontsize=16) | 
					
						
						|  | if ax.get_xlabel(): | 
					
						
						|  | ax.set_xlabel(ax.get_xlabel(), fontsize=14) | 
					
						
						|  | if ax.get_ylabel(): | 
					
						
						|  | ax.set_ylabel(ax.get_ylabel(), fontsize=14) | 
					
						
						|  |  | 
					
						
						|  | if ax.get_legend(): | 
					
						
						|  | ax.legend(fontsize=12) | 
					
						
						|  | fig.tight_layout() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | buf = io.BytesIO() | 
					
						
						|  | plt.savefig(buf, format='png', dpi=100) | 
					
						
						|  | buf.seek(0) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | img = Image.open(buf) | 
					
						
						|  | plt.close('all') | 
					
						
						|  |  | 
					
						
						|  | return response.message.content, img | 
					
						
						|  | except Exception as e: | 
					
						
						|  | plt.close('all') | 
					
						
						|  |  | 
					
						
						|  | print(f"Visualization error: {str(e)}") | 
					
						
						|  | return response.message.content, None | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  | return response.message.content, None | 
					
						
						|  |  | 
					
						
						|  | except Exception as e: | 
					
						
						|  | plt.close('all') | 
					
						
						|  | return f"Error processing query: {str(e)}", None | 
					
						
						|  |  | 
					
						
						|  | def handle_example_selection(example_name): | 
					
						
						|  | if example_name in EXAMPLE_DATASETS: | 
					
						
						|  | file_path = EXAMPLE_DATASETS[example_name] | 
					
						
						|  | df, message = load_dataframe(file_path) | 
					
						
						|  | return df, message, gr.update(value=f"Dataset preview:\n{df.head().to_string()}") | 
					
						
						|  | return None, "Please select a valid example dataset.", gr.update(value="") | 
					
						
						|  |  | 
					
						
						|  | def handle_file_upload(file): | 
					
						
						|  | if file is not None: | 
					
						
						|  | df, message = load_dataframe(file) | 
					
						
						|  | return df, message, gr.update(value=f"Dataset preview:\n{df.head().to_string()}") | 
					
						
						|  | return None, "No file uploaded.", gr.update(value="") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | with gr.Blocks(title="Pandas Data Analysis with Groq LLM") as app: | 
					
						
						|  | gr.Markdown("# Pandas Data Analysis with Groq LLM") | 
					
						
						|  | gr.Markdown("Upload your CSV data or choose an example dataset, then ask questions about it.") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | df_state = gr.State(value=None) | 
					
						
						|  |  | 
					
						
						|  | with gr.Row(): | 
					
						
						|  | with gr.Column(scale=1): | 
					
						
						|  | with gr.Group(): | 
					
						
						|  | gr.Markdown("### Data Selection") | 
					
						
						|  | with gr.Tab("Upload Data"): | 
					
						
						|  | file_input = gr.File(label="Upload CSV File", file_types=[".csv"]) | 
					
						
						|  | upload_button = gr.Button("Load Uploaded Data") | 
					
						
						|  |  | 
					
						
						|  | with gr.Tab("Example Datasets"): | 
					
						
						|  | example_dropdown = gr.Dropdown( | 
					
						
						|  | choices=list(EXAMPLE_DATASETS.keys()), | 
					
						
						|  | label="Select Example Dataset" | 
					
						
						|  | ) | 
					
						
						|  | example_button = gr.Button("Load Example Dataset") | 
					
						
						|  |  | 
					
						
						|  | data_status = gr.Textbox(label="Data Loading Status", interactive=False) | 
					
						
						|  |  | 
					
						
						|  | with gr.Group(): | 
					
						
						|  | gr.Markdown("### Groq API Configuration") | 
					
						
						|  | api_key = gr.Textbox( | 
					
						
						|  | label="Enter your Groq API Key", | 
					
						
						|  | placeholder="gsk_...", | 
					
						
						|  | type="password" | 
					
						
						|  | ) | 
					
						
						|  | model_choice = gr.Dropdown( | 
					
						
						|  | choices=["llama-3.3-70b-versatile", "mixtral-8x7b-32768", "gemma-7b-it"], | 
					
						
						|  | value="llama-3.3-70b-versatile", | 
					
						
						|  | label="Select Groq Model" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | with gr.Column(scale=1): | 
					
						
						|  | data_preview = gr.Textbox(label="Dataset Preview", interactive=False, lines=10) | 
					
						
						|  | query_input = gr.Textbox( | 
					
						
						|  | label="Ask a question about your data", | 
					
						
						|  | placeholder="e.g., What is the trend of monthly bookings over time?", | 
					
						
						|  | lines=2 | 
					
						
						|  | ) | 
					
						
						|  | query_button = gr.Button("Submit Query") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | with gr.Tabs(): | 
					
						
						|  | with gr.TabItem("Text Response"): | 
					
						
						|  | response_output = gr.Textbox(label="Response", interactive=False, lines=10) | 
					
						
						|  | with gr.TabItem("Visualization"): | 
					
						
						|  | image_output = gr.Image(label="Data Visualization", interactive=False) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | upload_button.click( | 
					
						
						|  | handle_file_upload, | 
					
						
						|  | inputs=[file_input], | 
					
						
						|  | outputs=[df_state, data_status, data_preview] | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | example_button.click( | 
					
						
						|  | handle_example_selection, | 
					
						
						|  | inputs=[example_dropdown], | 
					
						
						|  | outputs=[df_state, data_status, data_preview] | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | query_button.click( | 
					
						
						|  | process_query, | 
					
						
						|  | inputs=[query_input, api_key, df_state, model_choice], | 
					
						
						|  | outputs=[response_output, image_output] | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | gr.Markdown(""" | 
					
						
						|  | ### Instructions | 
					
						
						|  | 1. Upload your CSV file or select an example dataset | 
					
						
						|  | 2. Enter your Groq API key (get one at [https://console.groq.com](https://console.groq.com)) | 
					
						
						|  | 3. Ask questions about your data in natural language | 
					
						
						|  | 4. Get AI-powered insights and visualizations based on your data | 
					
						
						|  |  | 
					
						
						|  | ### Example Questions | 
					
						
						|  | - What is the trend of monthly bookings over time? | 
					
						
						|  | - What's the distribution of stay duration? | 
					
						
						|  | - Which country has the most bookings? | 
					
						
						|  | - Is there a correlation between lead time and cancellations? | 
					
						
						|  | - Show me bookings by month and year | 
					
						
						|  | """) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if __name__ == "__main__": | 
					
						
						|  | app.launch() |