Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,63 +1,58 @@
|
|
1 |
import gradio as gr
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
message,
|
12 |
-
history: list[tuple[str, str]],
|
13 |
-
system_message,
|
14 |
-
max_tokens,
|
15 |
-
temperature,
|
16 |
-
top_p,
|
17 |
-
):
|
18 |
-
messages = [{"role": "system", "content": system_message}]
|
19 |
-
|
20 |
-
for val in history:
|
21 |
-
if val[0]:
|
22 |
-
messages.append({"role": "user", "content": val[0]})
|
23 |
-
if val[1]:
|
24 |
-
messages.append({"role": "assistant", "content": val[1]})
|
25 |
-
|
26 |
-
messages.append({"role": "user", "content": message})
|
27 |
-
|
28 |
-
response = ""
|
29 |
-
|
30 |
-
for message in client.chat_completion(
|
31 |
-
messages,
|
32 |
-
max_tokens=max_tokens,
|
33 |
-
stream=True,
|
34 |
-
temperature=temperature,
|
35 |
-
top_p=top_p,
|
36 |
-
):
|
37 |
-
token = message.choices[0].delta.content
|
38 |
-
|
39 |
-
response += token
|
40 |
-
yield response
|
41 |
-
|
42 |
-
"""
|
43 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
44 |
-
"""
|
45 |
-
demo = gr.ChatInterface(
|
46 |
-
respond,
|
47 |
-
additional_inputs=[
|
48 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
49 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
50 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
51 |
-
gr.Slider(
|
52 |
-
minimum=0.1,
|
53 |
-
maximum=1.0,
|
54 |
-
value=0.95,
|
55 |
-
step=0.05,
|
56 |
-
label="Top-p (nucleus sampling)",
|
57 |
-
),
|
58 |
-
],
|
59 |
)
|
60 |
|
61 |
-
|
62 |
-
|
63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor
|
4 |
+
from qwen_vl_utils import process_vision_info
|
5 |
+
|
6 |
+
# Load the model and processor on available device(s)
|
7 |
+
model = Qwen2VLForConditionalGeneration.from_pretrained(
|
8 |
+
"Qwen/Qwen2-VL-72B-Instruct-AWQ",
|
9 |
+
torch_dtype=torch.float16,
|
10 |
+
device_map="auto"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
)
|
12 |
|
13 |
+
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-72B-Instruct-AWQ")
|
14 |
+
|
15 |
+
@spaces.GPU(duration=60)
|
16 |
+
def generate_caption(image, prompt):
|
17 |
+
messages = [
|
18 |
+
{
|
19 |
+
"role": "user",
|
20 |
+
"content": [
|
21 |
+
{
|
22 |
+
"type": "image",
|
23 |
+
"image": image, # The uploaded image
|
24 |
+
},
|
25 |
+
{"type": "text", "text": prompt},
|
26 |
+
],
|
27 |
+
}
|
28 |
+
]
|
29 |
+
|
30 |
+
# Prepare the input
|
31 |
+
text = processor.apply_chat_template(
|
32 |
+
messages, tokenize=False, add_generation_prompt=True
|
33 |
+
)
|
34 |
+
image_inputs, video_inputs = process_vision_info(messages)
|
35 |
+
inputs = processor(
|
36 |
+
text=[text],
|
37 |
+
images=image_inputs,
|
38 |
+
videos=video_inputs,
|
39 |
+
padding=True,
|
40 |
+
return_tensors="pt"
|
41 |
+
)
|
42 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
43 |
+
inputs = inputs.to(device)
|
44 |
+
|
45 |
+
# Generate the output
|
46 |
+
generated_ids = model.generate(**inputs, max_new_tokens=128)
|
47 |
+
generated_ids_trimmed = [
|
48 |
+
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
49 |
+
]
|
50 |
+
output_text = processor.batch_decode(
|
51 |
+
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
52 |
+
)
|
53 |
+
return output_text[0]
|
54 |
+
|
55 |
+
|
56 |
+
# Launch the Gradio interface with the updated inference function and title
|
57 |
+
demo = gr.ChatInterface(fn=generate_caption, title="Qwen2-VL-72B-Instruct-OCR", multimodal=True, description="Upload your Image and get the best possible insights out of the Image")
|
58 |
+
demo.queue().launch()
|