akhil2808 commited on
Commit
8dd8935
1 Parent(s): c7733ca

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +55 -60
app.py CHANGED
@@ -1,63 +1,58 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
- """
43
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
44
- """
45
- demo = gr.ChatInterface(
46
- respond,
47
- additional_inputs=[
48
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
49
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
50
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
51
- gr.Slider(
52
- minimum=0.1,
53
- maximum=1.0,
54
- value=0.95,
55
- step=0.05,
56
- label="Top-p (nucleus sampling)",
57
- ),
58
- ],
59
  )
60
 
61
-
62
- if __name__ == "__main__":
63
- demo.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import gradio as gr
2
+ import torch
3
+ from transformers import Qwen2VLForConditionalGeneration, AutoProcessor
4
+ from qwen_vl_utils import process_vision_info
5
+
6
+ # Load the model and processor on available device(s)
7
+ model = Qwen2VLForConditionalGeneration.from_pretrained(
8
+ "Qwen/Qwen2-VL-72B-Instruct-AWQ",
9
+ torch_dtype=torch.float16,
10
+ device_map="auto"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
  )
12
 
13
+ processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-72B-Instruct-AWQ")
14
+
15
+ @spaces.GPU(duration=60)
16
+ def generate_caption(image, prompt):
17
+ messages = [
18
+ {
19
+ "role": "user",
20
+ "content": [
21
+ {
22
+ "type": "image",
23
+ "image": image, # The uploaded image
24
+ },
25
+ {"type": "text", "text": prompt},
26
+ ],
27
+ }
28
+ ]
29
+
30
+ # Prepare the input
31
+ text = processor.apply_chat_template(
32
+ messages, tokenize=False, add_generation_prompt=True
33
+ )
34
+ image_inputs, video_inputs = process_vision_info(messages)
35
+ inputs = processor(
36
+ text=[text],
37
+ images=image_inputs,
38
+ videos=video_inputs,
39
+ padding=True,
40
+ return_tensors="pt"
41
+ )
42
+ device = "cuda" if torch.cuda.is_available() else "cpu"
43
+ inputs = inputs.to(device)
44
+
45
+ # Generate the output
46
+ generated_ids = model.generate(**inputs, max_new_tokens=128)
47
+ generated_ids_trimmed = [
48
+ out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
49
+ ]
50
+ output_text = processor.batch_decode(
51
+ generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
52
+ )
53
+ return output_text[0]
54
+
55
+
56
+ # Launch the Gradio interface with the updated inference function and title
57
+ demo = gr.ChatInterface(fn=generate_caption, title="Qwen2-VL-72B-Instruct-OCR", multimodal=True, description="Upload your Image and get the best possible insights out of the Image")
58
+ demo.queue().launch()