Spaces:
Runtime error
Runtime error
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved. | |
# | |
# NVIDIA CORPORATION and its licensors retain all intellectual property | |
# and proprietary rights in and to this software, related documentation | |
# and any modifications thereto. Any use, reproduction, disclosure or | |
# distribution of this software and related documentation without an express | |
# license agreement from NVIDIA CORPORATION is strictly prohibited. | |
"""Main API for computing and reporting quality metrics.""" | |
import os | |
import time | |
import json | |
import torch | |
import dnnlib | |
from . import metric_utils | |
from . import frechet_inception_distance | |
from . import kernel_inception_distance | |
from . import precision_recall | |
from . import perceptual_path_length | |
from . import inception_score | |
from . import equivariance | |
#---------------------------------------------------------------------------- | |
_metric_dict = dict() # name => fn | |
def register_metric(fn): | |
assert callable(fn) | |
_metric_dict[fn.__name__] = fn | |
return fn | |
def is_valid_metric(metric): | |
return metric in _metric_dict | |
def list_valid_metrics(): | |
return list(_metric_dict.keys()) | |
#---------------------------------------------------------------------------- | |
def calc_metric(metric, **kwargs): # See metric_utils.MetricOptions for the full list of arguments. | |
assert is_valid_metric(metric) | |
opts = metric_utils.MetricOptions(**kwargs) | |
# Calculate. | |
start_time = time.time() | |
results = _metric_dict[metric](opts) | |
total_time = time.time() - start_time | |
# Broadcast results. | |
for key, value in list(results.items()): | |
if opts.num_gpus > 1: | |
value = torch.as_tensor(value, dtype=torch.float64, device=opts.device) | |
torch.distributed.broadcast(tensor=value, src=0) | |
value = float(value.cpu()) | |
results[key] = value | |
# Decorate with metadata. | |
return dnnlib.EasyDict( | |
results = dnnlib.EasyDict(results), | |
metric = metric, | |
total_time = total_time, | |
total_time_str = dnnlib.util.format_time(total_time), | |
num_gpus = opts.num_gpus, | |
) | |
#---------------------------------------------------------------------------- | |
def report_metric(result_dict, run_dir=None, snapshot_pkl=None): | |
metric = result_dict['metric'] | |
assert is_valid_metric(metric) | |
if run_dir is not None and snapshot_pkl is not None: | |
snapshot_pkl = os.path.relpath(snapshot_pkl, run_dir) | |
jsonl_line = json.dumps(dict(result_dict, snapshot_pkl=snapshot_pkl, timestamp=time.time())) | |
print(jsonl_line) | |
if run_dir is not None and os.path.isdir(run_dir): | |
with open(os.path.join(run_dir, f'metric-{metric}.jsonl'), 'at') as f: | |
f.write(jsonl_line + '\n') | |
#---------------------------------------------------------------------------- | |
# Recommended metrics. | |
def fid50k_full(opts): | |
opts.dataset_kwargs.update(max_size=None, xflip=False) | |
fid = frechet_inception_distance.compute_fid(opts, max_real=None, num_gen=50000) | |
return dict(fid50k_full=fid) | |
def kid50k_full(opts): | |
opts.dataset_kwargs.update(max_size=None, xflip=False) | |
kid = kernel_inception_distance.compute_kid(opts, max_real=1000000, num_gen=50000, num_subsets=100, max_subset_size=1000) | |
return dict(kid50k_full=kid) | |
def pr50k3_full(opts): | |
opts.dataset_kwargs.update(max_size=None, xflip=False) | |
precision, recall = precision_recall.compute_pr(opts, max_real=200000, num_gen=50000, nhood_size=3, row_batch_size=10000, col_batch_size=10000) | |
return dict(pr50k3_full_precision=precision, pr50k3_full_recall=recall) | |
def ppl2_wend(opts): | |
ppl = perceptual_path_length.compute_ppl(opts, num_samples=50000, epsilon=1e-4, space='w', sampling='end', crop=False, batch_size=2) | |
return dict(ppl2_wend=ppl) | |
def eqt50k_int(opts): | |
opts.G_kwargs.update(force_fp32=True) | |
psnr = equivariance.compute_equivariance_metrics(opts, num_samples=50000, batch_size=4, compute_eqt_int=True) | |
return dict(eqt50k_int=psnr) | |
def eqt50k_frac(opts): | |
opts.G_kwargs.update(force_fp32=True) | |
psnr = equivariance.compute_equivariance_metrics(opts, num_samples=50000, batch_size=4, compute_eqt_frac=True) | |
return dict(eqt50k_frac=psnr) | |
def eqr50k(opts): | |
opts.G_kwargs.update(force_fp32=True) | |
psnr = equivariance.compute_equivariance_metrics(opts, num_samples=50000, batch_size=4, compute_eqr=True) | |
return dict(eqr50k=psnr) | |
#---------------------------------------------------------------------------- | |
# Legacy metrics. | |
def fid50k(opts): | |
opts.dataset_kwargs.update(max_size=None) | |
fid = frechet_inception_distance.compute_fid(opts, max_real=50000, num_gen=50000) | |
return dict(fid50k=fid) | |
def kid50k(opts): | |
opts.dataset_kwargs.update(max_size=None) | |
kid = kernel_inception_distance.compute_kid(opts, max_real=50000, num_gen=50000, num_subsets=100, max_subset_size=1000) | |
return dict(kid50k=kid) | |
def pr50k3(opts): | |
opts.dataset_kwargs.update(max_size=None) | |
precision, recall = precision_recall.compute_pr(opts, max_real=50000, num_gen=50000, nhood_size=3, row_batch_size=10000, col_batch_size=10000) | |
return dict(pr50k3_precision=precision, pr50k3_recall=recall) | |
def is50k(opts): | |
opts.dataset_kwargs.update(max_size=None, xflip=False) | |
mean, std = inception_score.compute_is(opts, num_gen=50000, num_splits=10) | |
return dict(is50k_mean=mean, is50k_std=std) | |
#---------------------------------------------------------------------------- | |