Spaces:
Runtime error
Runtime error
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved. | |
# | |
# NVIDIA CORPORATION and its licensors retain all intellectual property | |
# and proprietary rights in and to this software, related documentation | |
# and any modifications thereto. Any use, reproduction, disclosure or | |
# distribution of this software and related documentation without an express | |
# license agreement from NVIDIA CORPORATION is strictly prohibited. | |
"""Generate images using pretrained network pickle.""" | |
import os | |
import re | |
from typing import List, Optional, Tuple, Union | |
import click | |
import dnnlib | |
import numpy as np | |
import PIL.Image | |
import torch | |
import legacy | |
#---------------------------------------------------------------------------- | |
def parse_range(s: Union[str, List]) -> List[int]: | |
'''Parse a comma separated list of numbers or ranges and return a list of ints. | |
Example: '1,2,5-10' returns [1, 2, 5, 6, 7] | |
''' | |
if isinstance(s, list): return s | |
ranges = [] | |
range_re = re.compile(r'^(\d+)-(\d+)$') | |
for p in s.split(','): | |
if m := range_re.match(p): | |
ranges.extend(range(int(m.group(1)), int(m.group(2))+1)) | |
else: | |
ranges.append(int(p)) | |
return ranges | |
#---------------------------------------------------------------------------- | |
def parse_vec2(s: Union[str, Tuple[float, float]]) -> Tuple[float, float]: | |
'''Parse a floating point 2-vector of syntax 'a,b'. | |
Example: | |
'0,1' returns (0,1) | |
''' | |
if isinstance(s, tuple): return s | |
parts = s.split(',') | |
if len(parts) == 2: | |
return (float(parts[0]), float(parts[1])) | |
raise ValueError(f'cannot parse 2-vector {s}') | |
#---------------------------------------------------------------------------- | |
def make_transform(translate: Tuple[float,float], angle: float): | |
m = np.eye(3) | |
s = np.sin(angle/360.0*np.pi*2) | |
c = np.cos(angle/360.0*np.pi*2) | |
m[0][0] = c | |
m[0][1] = s | |
m[0][2] = translate[0] | |
m[1][0] = -s | |
m[1][1] = c | |
m[1][2] = translate[1] | |
return m | |
#---------------------------------------------------------------------------- | |
def generate_images( | |
network_pkl: str, | |
seeds: List[int], | |
truncation_psi: float, | |
noise_mode: str, | |
outdir: str, | |
translate: Tuple[float,float], | |
rotate: float, | |
class_idx: Optional[int] | |
): | |
"""Generate images using pretrained network pickle. | |
Examples: | |
\b | |
# Generate an image using pre-trained AFHQv2 model ("Ours" in Figure 1, left). | |
python gen_images.py --outdir=out --trunc=1 --seeds=2 \\ | |
--network=https://api.ngc.nvidia.com/v2/models/nvidia/research/stylegan3/versions/1/files/stylegan3-r-afhqv2-512x512.pkl | |
\b | |
# Generate uncurated images with truncation using the MetFaces-U dataset | |
python gen_images.py --outdir=out --trunc=0.7 --seeds=600-605 \\ | |
--network=https://api.ngc.nvidia.com/v2/models/nvidia/research/stylegan3/versions/1/files/stylegan3-t-metfacesu-1024x1024.pkl | |
""" | |
print('Loading networks from "%s"...' % network_pkl) | |
device = torch.device('cuda') | |
with dnnlib.util.open_url(network_pkl) as f: | |
G = legacy.load_network_pkl(f)['G_ema'].to(device) # type: ignore | |
os.makedirs(outdir, exist_ok=True) | |
# Labels. | |
label = torch.zeros([1, G.c_dim], device=device) | |
if G.c_dim != 0: | |
if class_idx is None: | |
raise click.ClickException('Must specify class label with --class when using a conditional network') | |
label[:, class_idx] = 1 | |
else: | |
if class_idx is not None: | |
print ('warn: --class=lbl ignored when running on an unconditional network') | |
# Generate images. | |
for seed_idx, seed in enumerate(seeds): | |
print('Generating image for seed %d (%d/%d) ...' % (seed, seed_idx, len(seeds))) | |
z = torch.from_numpy(np.random.RandomState(seed).randn(1, G.z_dim)).to(device) | |
# Construct an inverse rotation/translation matrix and pass to the generator. The | |
# generator expects this matrix as an inverse to avoid potentially failing numerical | |
# operations in the network. | |
if hasattr(G.synthesis, 'input'): | |
m = make_transform(translate, rotate) | |
m = np.linalg.inv(m) | |
G.synthesis.input.transform.copy_(torch.from_numpy(m)) | |
img = G(z, label, truncation_psi=truncation_psi, noise_mode=noise_mode) | |
img = (img.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(torch.uint8) | |
PIL.Image.fromarray(img[0].cpu().numpy(), 'RGB').save(f'{outdir}/seed{seed:04d}.png') | |
#---------------------------------------------------------------------------- | |
if __name__ == "__main__": | |
generate_images() # pylint: disable=no-value-for-parameter | |
#---------------------------------------------------------------------------- | |