akhaliq's picture
akhaliq HF staff
Duplicate from ashawkey/stable-dreamfusion
363b2a6
raw
history blame contribute delete
No virus
14.7 kB
import numpy as np
import time
import torch
import torch.nn as nn
from torch.autograd import Function
from torch.cuda.amp import custom_bwd, custom_fwd
try:
import _raymarching as _backend
except ImportError:
from .backend import _backend
# ----------------------------------------
# utils
# ----------------------------------------
class _near_far_from_aabb(Function):
@staticmethod
@custom_fwd(cast_inputs=torch.float32)
def forward(ctx, rays_o, rays_d, aabb, min_near=0.2):
''' near_far_from_aabb, CUDA implementation
Calculate rays' intersection time (near and far) with aabb
Args:
rays_o: float, [N, 3]
rays_d: float, [N, 3]
aabb: float, [6], (xmin, ymin, zmin, xmax, ymax, zmax)
min_near: float, scalar
Returns:
nears: float, [N]
fars: float, [N]
'''
if not rays_o.is_cuda: rays_o = rays_o.cuda()
if not rays_d.is_cuda: rays_d = rays_d.cuda()
rays_o = rays_o.contiguous().view(-1, 3)
rays_d = rays_d.contiguous().view(-1, 3)
N = rays_o.shape[0] # num rays
nears = torch.empty(N, dtype=rays_o.dtype, device=rays_o.device)
fars = torch.empty(N, dtype=rays_o.dtype, device=rays_o.device)
_backend.near_far_from_aabb(rays_o, rays_d, aabb, N, min_near, nears, fars)
return nears, fars
near_far_from_aabb = _near_far_from_aabb.apply
class _sph_from_ray(Function):
@staticmethod
@custom_fwd(cast_inputs=torch.float32)
def forward(ctx, rays_o, rays_d, radius):
''' sph_from_ray, CUDA implementation
get spherical coordinate on the background sphere from rays.
Assume rays_o are inside the Sphere(radius).
Args:
rays_o: [N, 3]
rays_d: [N, 3]
radius: scalar, float
Return:
coords: [N, 2], in [-1, 1], theta and phi on a sphere. (further-surface)
'''
if not rays_o.is_cuda: rays_o = rays_o.cuda()
if not rays_d.is_cuda: rays_d = rays_d.cuda()
rays_o = rays_o.contiguous().view(-1, 3)
rays_d = rays_d.contiguous().view(-1, 3)
N = rays_o.shape[0] # num rays
coords = torch.empty(N, 2, dtype=rays_o.dtype, device=rays_o.device)
_backend.sph_from_ray(rays_o, rays_d, radius, N, coords)
return coords
sph_from_ray = _sph_from_ray.apply
class _morton3D(Function):
@staticmethod
def forward(ctx, coords):
''' morton3D, CUDA implementation
Args:
coords: [N, 3], int32, in [0, 128) (for some reason there is no uint32 tensor in torch...)
TODO: check if the coord range is valid! (current 128 is safe)
Returns:
indices: [N], int32, in [0, 128^3)
'''
if not coords.is_cuda: coords = coords.cuda()
N = coords.shape[0]
indices = torch.empty(N, dtype=torch.int32, device=coords.device)
_backend.morton3D(coords.int(), N, indices)
return indices
morton3D = _morton3D.apply
class _morton3D_invert(Function):
@staticmethod
def forward(ctx, indices):
''' morton3D_invert, CUDA implementation
Args:
indices: [N], int32, in [0, 128^3)
Returns:
coords: [N, 3], int32, in [0, 128)
'''
if not indices.is_cuda: indices = indices.cuda()
N = indices.shape[0]
coords = torch.empty(N, 3, dtype=torch.int32, device=indices.device)
_backend.morton3D_invert(indices.int(), N, coords)
return coords
morton3D_invert = _morton3D_invert.apply
class _packbits(Function):
@staticmethod
@custom_fwd(cast_inputs=torch.float32)
def forward(ctx, grid, thresh, bitfield=None):
''' packbits, CUDA implementation
Pack up the density grid into a bit field to accelerate ray marching.
Args:
grid: float, [C, H * H * H], assume H % 2 == 0
thresh: float, threshold
Returns:
bitfield: uint8, [C, H * H * H / 8]
'''
if not grid.is_cuda: grid = grid.cuda()
grid = grid.contiguous()
C = grid.shape[0]
H3 = grid.shape[1]
N = C * H3 // 8
if bitfield is None:
bitfield = torch.empty(N, dtype=torch.uint8, device=grid.device)
_backend.packbits(grid, N, thresh, bitfield)
return bitfield
packbits = _packbits.apply
# ----------------------------------------
# train functions
# ----------------------------------------
class _march_rays_train(Function):
@staticmethod
@custom_fwd(cast_inputs=torch.float32)
def forward(ctx, rays_o, rays_d, bound, density_bitfield, C, H, nears, fars, step_counter=None, mean_count=-1, perturb=False, align=-1, force_all_rays=False, dt_gamma=0, max_steps=1024):
''' march rays to generate points (forward only)
Args:
rays_o/d: float, [N, 3]
bound: float, scalar
density_bitfield: uint8: [CHHH // 8]
C: int
H: int
nears/fars: float, [N]
step_counter: int32, (2), used to count the actual number of generated points.
mean_count: int32, estimated mean steps to accelerate training. (but will randomly drop rays if the actual point count exceeded this threshold.)
perturb: bool
align: int, pad output so its size is dividable by align, set to -1 to disable.
force_all_rays: bool, ignore step_counter and mean_count, always calculate all rays. Useful if rendering the whole image, instead of some rays.
dt_gamma: float, called cone_angle in instant-ngp, exponentially accelerate ray marching if > 0. (very significant effect, but generally lead to worse performance)
max_steps: int, max number of sampled points along each ray, also affect min_stepsize.
Returns:
xyzs: float, [M, 3], all generated points' coords. (all rays concated, need to use `rays` to extract points belonging to each ray)
dirs: float, [M, 3], all generated points' view dirs.
deltas: float, [M, 2], all generated points' deltas. (first for RGB, second for Depth)
rays: int32, [N, 3], all rays' (index, point_offset, point_count), e.g., xyzs[rays[i, 1]:rays[i, 2]] --> points belonging to rays[i, 0]
'''
if not rays_o.is_cuda: rays_o = rays_o.cuda()
if not rays_d.is_cuda: rays_d = rays_d.cuda()
if not density_bitfield.is_cuda: density_bitfield = density_bitfield.cuda()
rays_o = rays_o.contiguous().view(-1, 3)
rays_d = rays_d.contiguous().view(-1, 3)
density_bitfield = density_bitfield.contiguous()
N = rays_o.shape[0] # num rays
M = N * max_steps # init max points number in total
# running average based on previous epoch (mimic `measured_batch_size_before_compaction` in instant-ngp)
# It estimate the max points number to enable faster training, but will lead to random ignored rays if underestimated.
if not force_all_rays and mean_count > 0:
if align > 0:
mean_count += align - mean_count % align
M = mean_count
xyzs = torch.zeros(M, 3, dtype=rays_o.dtype, device=rays_o.device)
dirs = torch.zeros(M, 3, dtype=rays_o.dtype, device=rays_o.device)
deltas = torch.zeros(M, 2, dtype=rays_o.dtype, device=rays_o.device)
rays = torch.empty(N, 3, dtype=torch.int32, device=rays_o.device) # id, offset, num_steps
if step_counter is None:
step_counter = torch.zeros(2, dtype=torch.int32, device=rays_o.device) # point counter, ray counter
if perturb:
noises = torch.rand(N, dtype=rays_o.dtype, device=rays_o.device)
else:
noises = torch.zeros(N, dtype=rays_o.dtype, device=rays_o.device)
_backend.march_rays_train(rays_o, rays_d, density_bitfield, bound, dt_gamma, max_steps, N, C, H, M, nears, fars, xyzs, dirs, deltas, rays, step_counter, noises) # m is the actually used points number
#print(step_counter, M)
# only used at the first (few) epochs.
if force_all_rays or mean_count <= 0:
m = step_counter[0].item() # D2H copy
if align > 0:
m += align - m % align
xyzs = xyzs[:m]
dirs = dirs[:m]
deltas = deltas[:m]
torch.cuda.empty_cache()
return xyzs, dirs, deltas, rays
march_rays_train = _march_rays_train.apply
class _composite_rays_train(Function):
@staticmethod
@custom_fwd(cast_inputs=torch.float32)
def forward(ctx, sigmas, rgbs, deltas, rays, T_thresh=1e-4):
''' composite rays' rgbs, according to the ray marching formula.
Args:
rgbs: float, [M, 3]
sigmas: float, [M,]
deltas: float, [M, 2]
rays: int32, [N, 3]
Returns:
weights_sum: float, [N,], the alpha channel
depth: float, [N, ], the Depth
image: float, [N, 3], the RGB channel (after multiplying alpha!)
'''
sigmas = sigmas.contiguous()
rgbs = rgbs.contiguous()
M = sigmas.shape[0]
N = rays.shape[0]
weights_sum = torch.empty(N, dtype=sigmas.dtype, device=sigmas.device)
depth = torch.empty(N, dtype=sigmas.dtype, device=sigmas.device)
image = torch.empty(N, 3, dtype=sigmas.dtype, device=sigmas.device)
_backend.composite_rays_train_forward(sigmas, rgbs, deltas, rays, M, N, T_thresh, weights_sum, depth, image)
ctx.save_for_backward(sigmas, rgbs, deltas, rays, weights_sum, depth, image)
ctx.dims = [M, N, T_thresh]
return weights_sum, depth, image
@staticmethod
@custom_bwd
def backward(ctx, grad_weights_sum, grad_depth, grad_image):
# NOTE: grad_depth is not used now! It won't be propagated to sigmas.
grad_weights_sum = grad_weights_sum.contiguous()
grad_image = grad_image.contiguous()
sigmas, rgbs, deltas, rays, weights_sum, depth, image = ctx.saved_tensors
M, N, T_thresh = ctx.dims
grad_sigmas = torch.zeros_like(sigmas)
grad_rgbs = torch.zeros_like(rgbs)
_backend.composite_rays_train_backward(grad_weights_sum, grad_image, sigmas, rgbs, deltas, rays, weights_sum, image, M, N, T_thresh, grad_sigmas, grad_rgbs)
return grad_sigmas, grad_rgbs, None, None, None
composite_rays_train = _composite_rays_train.apply
# ----------------------------------------
# infer functions
# ----------------------------------------
class _march_rays(Function):
@staticmethod
@custom_fwd(cast_inputs=torch.float32)
def forward(ctx, n_alive, n_step, rays_alive, rays_t, rays_o, rays_d, bound, density_bitfield, C, H, near, far, align=-1, perturb=False, dt_gamma=0, max_steps=1024):
''' march rays to generate points (forward only, for inference)
Args:
n_alive: int, number of alive rays
n_step: int, how many steps we march
rays_alive: int, [N], the alive rays' IDs in N (N >= n_alive, but we only use first n_alive)
rays_t: float, [N], the alive rays' time, we only use the first n_alive.
rays_o/d: float, [N, 3]
bound: float, scalar
density_bitfield: uint8: [CHHH // 8]
C: int
H: int
nears/fars: float, [N]
align: int, pad output so its size is dividable by align, set to -1 to disable.
perturb: bool/int, int > 0 is used as the random seed.
dt_gamma: float, called cone_angle in instant-ngp, exponentially accelerate ray marching if > 0. (very significant effect, but generally lead to worse performance)
max_steps: int, max number of sampled points along each ray, also affect min_stepsize.
Returns:
xyzs: float, [n_alive * n_step, 3], all generated points' coords
dirs: float, [n_alive * n_step, 3], all generated points' view dirs.
deltas: float, [n_alive * n_step, 2], all generated points' deltas (here we record two deltas, the first is for RGB, the second for depth).
'''
if not rays_o.is_cuda: rays_o = rays_o.cuda()
if not rays_d.is_cuda: rays_d = rays_d.cuda()
rays_o = rays_o.contiguous().view(-1, 3)
rays_d = rays_d.contiguous().view(-1, 3)
M = n_alive * n_step
if align > 0:
M += align - (M % align)
xyzs = torch.zeros(M, 3, dtype=rays_o.dtype, device=rays_o.device)
dirs = torch.zeros(M, 3, dtype=rays_o.dtype, device=rays_o.device)
deltas = torch.zeros(M, 2, dtype=rays_o.dtype, device=rays_o.device) # 2 vals, one for rgb, one for depth
if perturb:
# torch.manual_seed(perturb) # test_gui uses spp index as seed
noises = torch.rand(n_alive, dtype=rays_o.dtype, device=rays_o.device)
else:
noises = torch.zeros(n_alive, dtype=rays_o.dtype, device=rays_o.device)
_backend.march_rays(n_alive, n_step, rays_alive, rays_t, rays_o, rays_d, bound, dt_gamma, max_steps, C, H, density_bitfield, near, far, xyzs, dirs, deltas, noises)
return xyzs, dirs, deltas
march_rays = _march_rays.apply
class _composite_rays(Function):
@staticmethod
@custom_fwd(cast_inputs=torch.float32) # need to cast sigmas & rgbs to float
def forward(ctx, n_alive, n_step, rays_alive, rays_t, sigmas, rgbs, deltas, weights_sum, depth, image, T_thresh=1e-2):
''' composite rays' rgbs, according to the ray marching formula. (for inference)
Args:
n_alive: int, number of alive rays
n_step: int, how many steps we march
rays_alive: int, [n_alive], the alive rays' IDs in N (N >= n_alive)
rays_t: float, [N], the alive rays' time
sigmas: float, [n_alive * n_step,]
rgbs: float, [n_alive * n_step, 3]
deltas: float, [n_alive * n_step, 2], all generated points' deltas (here we record two deltas, the first is for RGB, the second for depth).
In-place Outputs:
weights_sum: float, [N,], the alpha channel
depth: float, [N,], the depth value
image: float, [N, 3], the RGB channel (after multiplying alpha!)
'''
_backend.composite_rays(n_alive, n_step, T_thresh, rays_alive, rays_t, sigmas, rgbs, deltas, weights_sum, depth, image)
return tuple()
composite_rays = _composite_rays.apply