akhaliq's picture
akhaliq HF staff
Duplicate from ashawkey/stable-dreamfusion
363b2a6
import os
import glob
import tqdm
import math
import imageio
import random
import warnings
import tensorboardX
import numpy as np
import pandas as pd
import time
from datetime import datetime
import cv2
import matplotlib.pyplot as plt
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import torch.distributed as dist
from torch.utils.data import Dataset, DataLoader
import trimesh
from rich.console import Console
from torch_ema import ExponentialMovingAverage
from packaging import version as pver
def custom_meshgrid(*args):
# ref: https://pytorch.org/docs/stable/generated/torch.meshgrid.html?highlight=meshgrid#torch.meshgrid
if pver.parse(torch.__version__) < pver.parse('1.10'):
return torch.meshgrid(*args)
else:
return torch.meshgrid(*args, indexing='ij')
def safe_normalize(x, eps=1e-20):
return x / torch.sqrt(torch.clamp(torch.sum(x * x, -1, keepdim=True), min=eps))
@torch.cuda.amp.autocast(enabled=False)
def get_rays(poses, intrinsics, H, W, N=-1, error_map=None):
''' get rays
Args:
poses: [B, 4, 4], cam2world
intrinsics: [4]
H, W, N: int
error_map: [B, 128 * 128], sample probability based on training error
Returns:
rays_o, rays_d: [B, N, 3]
inds: [B, N]
'''
device = poses.device
B = poses.shape[0]
fx, fy, cx, cy = intrinsics
i, j = custom_meshgrid(torch.linspace(0, W-1, W, device=device), torch.linspace(0, H-1, H, device=device))
i = i.t().reshape([1, H*W]).expand([B, H*W]) + 0.5
j = j.t().reshape([1, H*W]).expand([B, H*W]) + 0.5
results = {}
if N > 0:
N = min(N, H*W)
if error_map is None:
inds = torch.randint(0, H*W, size=[N], device=device) # may duplicate
inds = inds.expand([B, N])
else:
# weighted sample on a low-reso grid
inds_coarse = torch.multinomial(error_map.to(device), N, replacement=False) # [B, N], but in [0, 128*128)
# map to the original resolution with random perturb.
inds_x, inds_y = inds_coarse // 128, inds_coarse % 128 # `//` will throw a warning in torch 1.10... anyway.
sx, sy = H / 128, W / 128
inds_x = (inds_x * sx + torch.rand(B, N, device=device) * sx).long().clamp(max=H - 1)
inds_y = (inds_y * sy + torch.rand(B, N, device=device) * sy).long().clamp(max=W - 1)
inds = inds_x * W + inds_y
results['inds_coarse'] = inds_coarse # need this when updating error_map
i = torch.gather(i, -1, inds)
j = torch.gather(j, -1, inds)
results['inds'] = inds
else:
inds = torch.arange(H*W, device=device).expand([B, H*W])
zs = torch.ones_like(i)
xs = (i - cx) / fx * zs
ys = (j - cy) / fy * zs
directions = torch.stack((xs, ys, zs), dim=-1)
directions = safe_normalize(directions)
rays_d = directions @ poses[:, :3, :3].transpose(-1, -2) # (B, N, 3)
rays_o = poses[..., :3, 3] # [B, 3]
rays_o = rays_o[..., None, :].expand_as(rays_d) # [B, N, 3]
results['rays_o'] = rays_o
results['rays_d'] = rays_d
return results
def seed_everything(seed):
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
#torch.backends.cudnn.deterministic = True
#torch.backends.cudnn.benchmark = True
def torch_vis_2d(x, renormalize=False):
# x: [3, H, W] or [1, H, W] or [H, W]
import matplotlib.pyplot as plt
import numpy as np
import torch
if isinstance(x, torch.Tensor):
if len(x.shape) == 3:
x = x.permute(1,2,0).squeeze()
x = x.detach().cpu().numpy()
print(f'[torch_vis_2d] {x.shape}, {x.dtype}, {x.min()} ~ {x.max()}')
x = x.astype(np.float32)
# renormalize
if renormalize:
x = (x - x.min(axis=0, keepdims=True)) / (x.max(axis=0, keepdims=True) - x.min(axis=0, keepdims=True) + 1e-8)
plt.imshow(x)
plt.show()
@torch.jit.script
def linear_to_srgb(x):
return torch.where(x < 0.0031308, 12.92 * x, 1.055 * x ** 0.41666 - 0.055)
@torch.jit.script
def srgb_to_linear(x):
return torch.where(x < 0.04045, x / 12.92, ((x + 0.055) / 1.055) ** 2.4)
class Trainer(object):
def __init__(self,
name, # name of this experiment
opt, # extra conf
model, # network
guidance, # guidance network
criterion=None, # loss function, if None, assume inline implementation in train_step
optimizer=None, # optimizer
ema_decay=None, # if use EMA, set the decay
lr_scheduler=None, # scheduler
metrics=[], # metrics for evaluation, if None, use val_loss to measure performance, else use the first metric.
local_rank=0, # which GPU am I
world_size=1, # total num of GPUs
device=None, # device to use, usually setting to None is OK. (auto choose device)
mute=False, # whether to mute all print
fp16=False, # amp optimize level
eval_interval=1, # eval once every $ epoch
max_keep_ckpt=2, # max num of saved ckpts in disk
workspace='workspace', # workspace to save logs & ckpts
best_mode='min', # the smaller/larger result, the better
use_loss_as_metric=True, # use loss as the first metric
report_metric_at_train=False, # also report metrics at training
use_checkpoint="latest", # which ckpt to use at init time
use_tensorboardX=True, # whether to use tensorboard for logging
scheduler_update_every_step=False, # whether to call scheduler.step() after every train step
):
self.name = name
self.opt = opt
self.mute = mute
self.metrics = metrics
self.local_rank = local_rank
self.world_size = world_size
self.workspace = workspace
self.ema_decay = ema_decay
self.fp16 = fp16
self.best_mode = best_mode
self.use_loss_as_metric = use_loss_as_metric
self.report_metric_at_train = report_metric_at_train
self.max_keep_ckpt = max_keep_ckpt
self.eval_interval = eval_interval
self.use_checkpoint = use_checkpoint
self.use_tensorboardX = use_tensorboardX
self.time_stamp = time.strftime("%Y-%m-%d_%H-%M-%S")
self.scheduler_update_every_step = scheduler_update_every_step
self.device = device if device is not None else torch.device(f'cuda:{local_rank}' if torch.cuda.is_available() else 'cpu')
self.console = Console()
model.to(self.device)
if self.world_size > 1:
model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[local_rank])
self.model = model
# guide model
self.guidance = guidance
# text prompt
if self.guidance is not None:
for p in self.guidance.parameters():
p.requires_grad = False
self.prepare_text_embeddings()
else:
self.text_z = None
if isinstance(criterion, nn.Module):
criterion.to(self.device)
self.criterion = criterion
if optimizer is None:
self.optimizer = optim.Adam(self.model.parameters(), lr=0.001, weight_decay=5e-4) # naive adam
else:
self.optimizer = optimizer(self.model)
if lr_scheduler is None:
self.lr_scheduler = optim.lr_scheduler.LambdaLR(self.optimizer, lr_lambda=lambda epoch: 1) # fake scheduler
else:
self.lr_scheduler = lr_scheduler(self.optimizer)
if ema_decay is not None:
self.ema = ExponentialMovingAverage(self.model.parameters(), decay=ema_decay)
else:
self.ema = None
self.scaler = torch.cuda.amp.GradScaler(enabled=self.fp16)
# variable init
self.epoch = 0
self.global_step = 0
self.local_step = 0
self.stats = {
"loss": [],
"valid_loss": [],
"results": [], # metrics[0], or valid_loss
"checkpoints": [], # record path of saved ckpt, to automatically remove old ckpt
"best_result": None,
}
# auto fix
if len(metrics) == 0 or self.use_loss_as_metric:
self.best_mode = 'min'
# workspace prepare
self.log_ptr = None
if self.workspace is not None:
os.makedirs(self.workspace, exist_ok=True)
self.log_path = os.path.join(workspace, f"log_{self.name}.txt")
self.log_ptr = open(self.log_path, "a+")
self.ckpt_path = os.path.join(self.workspace, 'checkpoints')
self.best_path = f"{self.ckpt_path}/{self.name}.pth"
os.makedirs(self.ckpt_path, exist_ok=True)
self.log(f'[INFO] Trainer: {self.name} | {self.time_stamp} | {self.device} | {"fp16" if self.fp16 else "fp32"} | {self.workspace}')
self.log(f'[INFO] #parameters: {sum([p.numel() for p in model.parameters() if p.requires_grad])}')
if self.workspace is not None:
if self.use_checkpoint == "scratch":
self.log("[INFO] Training from scratch ...")
elif self.use_checkpoint == "latest":
self.log("[INFO] Loading latest checkpoint ...")
self.load_checkpoint()
elif self.use_checkpoint == "latest_model":
self.log("[INFO] Loading latest checkpoint (model only)...")
self.load_checkpoint(model_only=True)
elif self.use_checkpoint == "best":
if os.path.exists(self.best_path):
self.log("[INFO] Loading best checkpoint ...")
self.load_checkpoint(self.best_path)
else:
self.log(f"[INFO] {self.best_path} not found, loading latest ...")
self.load_checkpoint()
else: # path to ckpt
self.log(f"[INFO] Loading {self.use_checkpoint} ...")
self.load_checkpoint(self.use_checkpoint)
# calculate the text embs.
def prepare_text_embeddings(self):
if self.opt.text is None:
self.log(f"[WARN] text prompt is not provided.")
self.text_z = None
return
if not self.opt.dir_text:
self.text_z = self.guidance.get_text_embeds([self.opt.text])
else:
self.text_z = []
for d in ['front', 'side', 'back', 'side', 'overhead', 'bottom']:
text = f"{self.opt.text}, {d} view"
text_z = self.guidance.get_text_embeds([text])
self.text_z.append(text_z)
def __del__(self):
if self.log_ptr:
self.log_ptr.close()
def log(self, *args, **kwargs):
if self.local_rank == 0:
if not self.mute:
#print(*args)
self.console.print(*args, **kwargs)
if self.log_ptr:
print(*args, file=self.log_ptr)
self.log_ptr.flush() # write immediately to file
### ------------------------------
def train_step(self, data):
rays_o = data['rays_o'] # [B, N, 3]
rays_d = data['rays_d'] # [B, N, 3]
B, N = rays_o.shape[:2]
H, W = data['H'], data['W']
# TODO: shading is not working right now...
if self.global_step < self.opt.albedo_iters:
shading = 'albedo'
ambient_ratio = 1.0
else:
rand = random.random()
if rand > 0.8:
shading = 'albedo'
ambient_ratio = 1.0
# elif rand > 0.4:
# shading = 'textureless'
# ambient_ratio = 0.1
else:
shading = 'lambertian'
ambient_ratio = 0.1
# _t = time.time()
bg_color = torch.rand((B * N, 3), device=rays_o.device) # pixel-wise random
outputs = self.model.render(rays_o, rays_d, staged=False, perturb=True, bg_color=bg_color, ambient_ratio=ambient_ratio, shading=shading, force_all_rays=True, **vars(self.opt))
pred_rgb = outputs['image'].reshape(B, H, W, 3).permute(0, 3, 1, 2).contiguous() # [1, 3, H, W]
# torch.cuda.synchronize(); print(f'[TIME] nerf render {time.time() - _t:.4f}s')
# print(shading)
# torch_vis_2d(pred_rgb[0])
# text embeddings
if self.opt.dir_text:
dirs = data['dir'] # [B,]
text_z = self.text_z[dirs]
else:
text_z = self.text_z
# encode pred_rgb to latents
# _t = time.time()
loss = self.guidance.train_step(text_z, pred_rgb)
# torch.cuda.synchronize(); print(f'[TIME] total guiding {time.time() - _t:.4f}s')
# occupancy loss
pred_ws = outputs['weights_sum'].reshape(B, 1, H, W)
if self.opt.lambda_opacity > 0:
loss_opacity = (pred_ws ** 2).mean()
loss = loss + self.opt.lambda_opacity * loss_opacity
if self.opt.lambda_entropy > 0:
alphas = (pred_ws).clamp(1e-5, 1 - 1e-5)
# alphas = alphas ** 2 # skewed entropy, favors 0 over 1
loss_entropy = (- alphas * torch.log2(alphas) - (1 - alphas) * torch.log2(1 - alphas)).mean()
loss = loss + self.opt.lambda_entropy * loss_entropy
if self.opt.lambda_orient > 0 and 'loss_orient' in outputs:
loss_orient = outputs['loss_orient']
loss = loss + self.opt.lambda_orient * loss_orient
return pred_rgb, pred_ws, loss
def eval_step(self, data):
rays_o = data['rays_o'] # [B, N, 3]
rays_d = data['rays_d'] # [B, N, 3]
B, N = rays_o.shape[:2]
H, W = data['H'], data['W']
shading = data['shading'] if 'shading' in data else 'albedo'
ambient_ratio = data['ambient_ratio'] if 'ambient_ratio' in data else 1.0
light_d = data['light_d'] if 'light_d' in data else None
outputs = self.model.render(rays_o, rays_d, staged=True, perturb=False, bg_color=None, light_d=light_d, ambient_ratio=ambient_ratio, shading=shading, force_all_rays=True, **vars(self.opt))
pred_rgb = outputs['image'].reshape(B, H, W, 3)
pred_depth = outputs['depth'].reshape(B, H, W)
pred_ws = outputs['weights_sum'].reshape(B, H, W)
# mask_ws = outputs['mask'].reshape(B, H, W) # near < far
# loss_ws = pred_ws.sum() / mask_ws.sum()
# loss_ws = pred_ws.mean()
alphas = (pred_ws).clamp(1e-5, 1 - 1e-5)
# alphas = alphas ** 2 # skewed entropy, favors 0 over 1
loss_entropy = (- alphas * torch.log2(alphas) - (1 - alphas) * torch.log2(1 - alphas)).mean()
loss = self.opt.lambda_entropy * loss_entropy
return pred_rgb, pred_depth, loss
def test_step(self, data, bg_color=None, perturb=False):
rays_o = data['rays_o'] # [B, N, 3]
rays_d = data['rays_d'] # [B, N, 3]
B, N = rays_o.shape[:2]
H, W = data['H'], data['W']
if bg_color is not None:
bg_color = bg_color.to(rays_o.device)
else:
bg_color = torch.ones(3, device=rays_o.device) # [3]
shading = data['shading'] if 'shading' in data else 'albedo'
ambient_ratio = data['ambient_ratio'] if 'ambient_ratio' in data else 1.0
light_d = data['light_d'] if 'light_d' in data else None
outputs = self.model.render(rays_o, rays_d, staged=True, perturb=perturb, light_d=light_d, ambient_ratio=ambient_ratio, shading=shading, force_all_rays=True, bg_color=bg_color, **vars(self.opt))
pred_rgb = outputs['image'].reshape(B, H, W, 3)
pred_depth = outputs['depth'].reshape(B, H, W)
return pred_rgb, pred_depth
def save_mesh(self, save_path=None, resolution=128):
if save_path is None:
save_path = os.path.join(self.workspace, 'mesh')
self.log(f"==> Saving mesh to {save_path}")
os.makedirs(save_path, exist_ok=True)
self.model.export_mesh(save_path, resolution=resolution)
self.log(f"==> Finished saving mesh.")
### ------------------------------
def train(self, train_loader, valid_loader, max_epochs):
assert self.text_z is not None, 'Training must provide a text prompt!'
if self.use_tensorboardX and self.local_rank == 0:
self.writer = tensorboardX.SummaryWriter(os.path.join(self.workspace, "run", self.name))
start_t = time.time()
for epoch in range(self.epoch + 1, max_epochs + 1):
self.epoch = epoch
self.train_one_epoch(train_loader)
if self.workspace is not None and self.local_rank == 0:
self.save_checkpoint(full=True, best=False)
if self.epoch % self.eval_interval == 0:
self.evaluate_one_epoch(valid_loader)
self.save_checkpoint(full=False, best=True)
end_t = time.time()
self.log(f"[INFO] training takes {(end_t - start_t)/ 60:.4f} minutes.")
if self.use_tensorboardX and self.local_rank == 0:
self.writer.close()
def evaluate(self, loader, name=None):
self.use_tensorboardX, use_tensorboardX = False, self.use_tensorboardX
self.evaluate_one_epoch(loader, name)
self.use_tensorboardX = use_tensorboardX
def test(self, loader, save_path=None, name=None, write_video=True):
if save_path is None:
save_path = os.path.join(self.workspace, 'results')
if name is None:
name = f'{self.name}_ep{self.epoch:04d}'
os.makedirs(save_path, exist_ok=True)
self.log(f"==> Start Test, save results to {save_path}")
pbar = tqdm.tqdm(total=len(loader) * loader.batch_size, bar_format='{percentage:3.0f}% {n_fmt}/{total_fmt} [{elapsed}<{remaining}, {rate_fmt}]')
self.model.eval()
if write_video:
all_preds = []
all_preds_depth = []
with torch.no_grad():
for i, data in enumerate(loader):
with torch.cuda.amp.autocast(enabled=self.fp16):
preds, preds_depth = self.test_step(data)
pred = preds[0].detach().cpu().numpy()
pred = (pred * 255).astype(np.uint8)
pred_depth = preds_depth[0].detach().cpu().numpy()
pred_depth = (pred_depth * 255).astype(np.uint8)
if write_video:
all_preds.append(pred)
all_preds_depth.append(pred_depth)
else:
cv2.imwrite(os.path.join(save_path, f'{name}_{i:04d}_rgb.png'), cv2.cvtColor(pred, cv2.COLOR_RGB2BGR))
cv2.imwrite(os.path.join(save_path, f'{name}_{i:04d}_depth.png'), pred_depth)
pbar.update(loader.batch_size)
if write_video:
all_preds = np.stack(all_preds, axis=0)
all_preds_depth = np.stack(all_preds_depth, axis=0)
imageio.mimwrite(os.path.join(save_path, f'{name}_rgb.mp4'), all_preds, fps=25, quality=8, macro_block_size=1)
imageio.mimwrite(os.path.join(save_path, f'{name}_depth.mp4'), all_preds_depth, fps=25, quality=8, macro_block_size=1)
self.log(f"==> Finished Test.")
# [GUI] train text step.
def train_gui(self, train_loader, step=16):
self.model.train()
total_loss = torch.tensor([0], dtype=torch.float32, device=self.device)
loader = iter(train_loader)
for _ in range(step):
# mimic an infinite loop dataloader (in case the total dataset is smaller than step)
try:
data = next(loader)
except StopIteration:
loader = iter(train_loader)
data = next(loader)
# update grid every 16 steps
if self.model.cuda_ray and self.global_step % self.opt.update_extra_interval == 0:
with torch.cuda.amp.autocast(enabled=self.fp16):
self.model.update_extra_state()
self.global_step += 1
self.optimizer.zero_grad()
with torch.cuda.amp.autocast(enabled=self.fp16):
pred_rgbs, pred_ws, loss = self.train_step(data)
self.scaler.scale(loss).backward()
self.scaler.step(self.optimizer)
self.scaler.update()
if self.scheduler_update_every_step:
self.lr_scheduler.step()
total_loss += loss.detach()
if self.ema is not None:
self.ema.update()
average_loss = total_loss.item() / step
if not self.scheduler_update_every_step:
if isinstance(self.lr_scheduler, torch.optim.lr_scheduler.ReduceLROnPlateau):
self.lr_scheduler.step(average_loss)
else:
self.lr_scheduler.step()
outputs = {
'loss': average_loss,
'lr': self.optimizer.param_groups[0]['lr'],
}
return outputs
# [GUI] test on a single image
def test_gui(self, pose, intrinsics, W, H, bg_color=None, spp=1, downscale=1, light_d=None, ambient_ratio=1.0, shading='albedo'):
# render resolution (may need downscale to for better frame rate)
rH = int(H * downscale)
rW = int(W * downscale)
intrinsics = intrinsics * downscale
pose = torch.from_numpy(pose).unsqueeze(0).to(self.device)
rays = get_rays(pose, intrinsics, rH, rW, -1)
# from degree theta/phi to 3D normalized vec
light_d = np.deg2rad(light_d)
light_d = np.array([
np.sin(light_d[0]) * np.sin(light_d[1]),
np.cos(light_d[0]),
np.sin(light_d[0]) * np.cos(light_d[1]),
], dtype=np.float32)
light_d = torch.from_numpy(light_d).to(self.device)
data = {
'rays_o': rays['rays_o'],
'rays_d': rays['rays_d'],
'H': rH,
'W': rW,
'light_d': light_d,
'ambient_ratio': ambient_ratio,
'shading': shading,
}
self.model.eval()
if self.ema is not None:
self.ema.store()
self.ema.copy_to()
with torch.no_grad():
with torch.cuda.amp.autocast(enabled=self.fp16):
# here spp is used as perturb random seed!
preds, preds_depth = self.test_step(data, bg_color=bg_color, perturb=spp)
if self.ema is not None:
self.ema.restore()
# interpolation to the original resolution
if downscale != 1:
# have to permute twice with torch...
preds = F.interpolate(preds.permute(0, 3, 1, 2), size=(H, W), mode='nearest').permute(0, 2, 3, 1).contiguous()
preds_depth = F.interpolate(preds_depth.unsqueeze(1), size=(H, W), mode='nearest').squeeze(1)
outputs = {
'image': preds[0].detach().cpu().numpy(),
'depth': preds_depth[0].detach().cpu().numpy(),
}
return outputs
def train_one_epoch(self, loader):
self.log(f"==> Start Training {self.workspace} Epoch {self.epoch}, lr={self.optimizer.param_groups[0]['lr']:.6f} ...")
total_loss = 0
if self.local_rank == 0 and self.report_metric_at_train:
for metric in self.metrics:
metric.clear()
self.model.train()
# distributedSampler: must call set_epoch() to shuffle indices across multiple epochs
# ref: https://pytorch.org/docs/stable/data.html
if self.world_size > 1:
loader.sampler.set_epoch(self.epoch)
if self.local_rank == 0:
pbar = tqdm.tqdm(total=len(loader) * loader.batch_size, bar_format='{desc}: {percentage:3.0f}% {n_fmt}/{total_fmt} [{elapsed}<{remaining}, {rate_fmt}]')
self.local_step = 0
for data in loader:
# update grid every 16 steps
if self.model.cuda_ray and self.global_step % self.opt.update_extra_interval == 0:
with torch.cuda.amp.autocast(enabled=self.fp16):
self.model.update_extra_state()
self.local_step += 1
self.global_step += 1
self.optimizer.zero_grad()
with torch.cuda.amp.autocast(enabled=self.fp16):
pred_rgbs, pred_ws, loss = self.train_step(data)
self.scaler.scale(loss).backward()
self.scaler.step(self.optimizer)
self.scaler.update()
if self.scheduler_update_every_step:
self.lr_scheduler.step()
loss_val = loss.item()
total_loss += loss_val
if self.local_rank == 0:
# if self.report_metric_at_train:
# for metric in self.metrics:
# metric.update(preds, truths)
if self.use_tensorboardX:
self.writer.add_scalar("train/loss", loss_val, self.global_step)
self.writer.add_scalar("train/lr", self.optimizer.param_groups[0]['lr'], self.global_step)
if self.scheduler_update_every_step:
pbar.set_description(f"loss={loss_val:.4f} ({total_loss/self.local_step:.4f}), lr={self.optimizer.param_groups[0]['lr']:.6f}")
else:
pbar.set_description(f"loss={loss_val:.4f} ({total_loss/self.local_step:.4f})")
pbar.update(loader.batch_size)
if self.ema is not None:
self.ema.update()
average_loss = total_loss / self.local_step
self.stats["loss"].append(average_loss)
if self.local_rank == 0:
pbar.close()
if self.report_metric_at_train:
for metric in self.metrics:
self.log(metric.report(), style="red")
if self.use_tensorboardX:
metric.write(self.writer, self.epoch, prefix="train")
metric.clear()
if not self.scheduler_update_every_step:
if isinstance(self.lr_scheduler, torch.optim.lr_scheduler.ReduceLROnPlateau):
self.lr_scheduler.step(average_loss)
else:
self.lr_scheduler.step()
self.log(f"==> Finished Epoch {self.epoch}.")
def evaluate_one_epoch(self, loader, name=None):
self.log(f"++> Evaluate {self.workspace} at epoch {self.epoch} ...")
if name is None:
name = f'{self.name}_ep{self.epoch:04d}'
total_loss = 0
if self.local_rank == 0:
for metric in self.metrics:
metric.clear()
self.model.eval()
if self.ema is not None:
self.ema.store()
self.ema.copy_to()
if self.local_rank == 0:
pbar = tqdm.tqdm(total=len(loader) * loader.batch_size, bar_format='{desc}: {percentage:3.0f}% {n_fmt}/{total_fmt} [{elapsed}<{remaining}, {rate_fmt}]')
with torch.no_grad():
self.local_step = 0
for data in loader:
self.local_step += 1
with torch.cuda.amp.autocast(enabled=self.fp16):
preds, preds_depth, loss = self.eval_step(data)
# all_gather/reduce the statistics (NCCL only support all_*)
if self.world_size > 1:
dist.all_reduce(loss, op=dist.ReduceOp.SUM)
loss = loss / self.world_size
preds_list = [torch.zeros_like(preds).to(self.device) for _ in range(self.world_size)] # [[B, ...], [B, ...], ...]
dist.all_gather(preds_list, preds)
preds = torch.cat(preds_list, dim=0)
preds_depth_list = [torch.zeros_like(preds_depth).to(self.device) for _ in range(self.world_size)] # [[B, ...], [B, ...], ...]
dist.all_gather(preds_depth_list, preds_depth)
preds_depth = torch.cat(preds_depth_list, dim=0)
loss_val = loss.item()
total_loss += loss_val
# only rank = 0 will perform evaluation.
if self.local_rank == 0:
# save image
save_path = os.path.join(self.workspace, 'validation', f'{name}_{self.local_step:04d}_rgb.png')
save_path_depth = os.path.join(self.workspace, 'validation', f'{name}_{self.local_step:04d}_depth.png')
#self.log(f"==> Saving validation image to {save_path}")
os.makedirs(os.path.dirname(save_path), exist_ok=True)
pred = preds[0].detach().cpu().numpy()
pred = (pred * 255).astype(np.uint8)
pred_depth = preds_depth[0].detach().cpu().numpy()
pred_depth = (pred_depth * 255).astype(np.uint8)
cv2.imwrite(save_path, cv2.cvtColor(pred, cv2.COLOR_RGB2BGR))
cv2.imwrite(save_path_depth, pred_depth)
pbar.set_description(f"loss={loss_val:.4f} ({total_loss/self.local_step:.4f})")
pbar.update(loader.batch_size)
average_loss = total_loss / self.local_step
self.stats["valid_loss"].append(average_loss)
if self.local_rank == 0:
pbar.close()
if not self.use_loss_as_metric and len(self.metrics) > 0:
result = self.metrics[0].measure()
self.stats["results"].append(result if self.best_mode == 'min' else - result) # if max mode, use -result
else:
self.stats["results"].append(average_loss) # if no metric, choose best by min loss
for metric in self.metrics:
self.log(metric.report(), style="blue")
if self.use_tensorboardX:
metric.write(self.writer, self.epoch, prefix="evaluate")
metric.clear()
if self.ema is not None:
self.ema.restore()
self.log(f"++> Evaluate epoch {self.epoch} Finished.")
def save_checkpoint(self, name=None, full=False, best=False):
if name is None:
name = f'{self.name}_ep{self.epoch:04d}'
state = {
'epoch': self.epoch,
'global_step': self.global_step,
'stats': self.stats,
}
if self.model.cuda_ray:
state['mean_count'] = self.model.mean_count
state['mean_density'] = self.model.mean_density
if full:
state['optimizer'] = self.optimizer.state_dict()
state['lr_scheduler'] = self.lr_scheduler.state_dict()
state['scaler'] = self.scaler.state_dict()
if self.ema is not None:
state['ema'] = self.ema.state_dict()
if not best:
state['model'] = self.model.state_dict()
file_path = f"{name}.pth"
self.stats["checkpoints"].append(file_path)
if len(self.stats["checkpoints"]) > self.max_keep_ckpt:
old_ckpt = os.path.join(self.ckpt_path, self.stats["checkpoints"].pop(0))
if os.path.exists(old_ckpt):
os.remove(old_ckpt)
torch.save(state, os.path.join(self.ckpt_path, file_path))
else:
if len(self.stats["results"]) > 0:
if self.stats["best_result"] is None or self.stats["results"][-1] < self.stats["best_result"]:
self.log(f"[INFO] New best result: {self.stats['best_result']} --> {self.stats['results'][-1]}")
self.stats["best_result"] = self.stats["results"][-1]
# save ema results
if self.ema is not None:
self.ema.store()
self.ema.copy_to()
state['model'] = self.model.state_dict()
if self.ema is not None:
self.ema.restore()
torch.save(state, self.best_path)
else:
self.log(f"[WARN] no evaluated results found, skip saving best checkpoint.")
def load_checkpoint(self, checkpoint=None, model_only=False):
if checkpoint is None:
checkpoint_list = sorted(glob.glob(f'{self.ckpt_path}/*.pth'))
if checkpoint_list:
checkpoint = checkpoint_list[-1]
self.log(f"[INFO] Latest checkpoint is {checkpoint}")
else:
self.log("[WARN] No checkpoint found, model randomly initialized.")
return
checkpoint_dict = torch.load(checkpoint, map_location=self.device)
if 'model' not in checkpoint_dict:
self.model.load_state_dict(checkpoint_dict)
self.log("[INFO] loaded model.")
return
missing_keys, unexpected_keys = self.model.load_state_dict(checkpoint_dict['model'], strict=False)
self.log("[INFO] loaded model.")
if len(missing_keys) > 0:
self.log(f"[WARN] missing keys: {missing_keys}")
if len(unexpected_keys) > 0:
self.log(f"[WARN] unexpected keys: {unexpected_keys}")
if self.ema is not None and 'ema' in checkpoint_dict:
try:
self.ema.load_state_dict(checkpoint_dict['ema'])
self.log("[INFO] loaded EMA.")
except:
self.log("[WARN] failed to loaded EMA.")
if self.model.cuda_ray:
if 'mean_count' in checkpoint_dict:
self.model.mean_count = checkpoint_dict['mean_count']
if 'mean_density' in checkpoint_dict:
self.model.mean_density = checkpoint_dict['mean_density']
if model_only:
return
self.stats = checkpoint_dict['stats']
self.epoch = checkpoint_dict['epoch']
self.global_step = checkpoint_dict['global_step']
self.log(f"[INFO] load at epoch {self.epoch}, global step {self.global_step}")
if self.optimizer and 'optimizer' in checkpoint_dict:
try:
self.optimizer.load_state_dict(checkpoint_dict['optimizer'])
self.log("[INFO] loaded optimizer.")
except:
self.log("[WARN] Failed to load optimizer.")
if self.lr_scheduler and 'lr_scheduler' in checkpoint_dict:
try:
self.lr_scheduler.load_state_dict(checkpoint_dict['lr_scheduler'])
self.log("[INFO] loaded scheduler.")
except:
self.log("[WARN] Failed to load scheduler.")
if self.scaler and 'scaler' in checkpoint_dict:
try:
self.scaler.load_state_dict(checkpoint_dict['scaler'])
self.log("[INFO] loaded scaler.")
except:
self.log("[WARN] Failed to load scaler.")