Spaces:
Runtime error
Runtime error
import math | |
import torch | |
import numpy as np | |
import dearpygui.dearpygui as dpg | |
from scipy.spatial.transform import Rotation as R | |
from nerf.utils import * | |
class OrbitCamera: | |
def __init__(self, W, H, r=2, fovy=60): | |
self.W = W | |
self.H = H | |
self.radius = r # camera distance from center | |
self.fovy = fovy # in degree | |
self.center = np.array([0, 0, 0], dtype=np.float32) # look at this point | |
self.rot = R.from_quat([1, 0, 0, 0]) # init camera matrix: [[1, 0, 0], [0, -1, 0], [0, 0, 1]] (to suit ngp convention) | |
self.up = np.array([0, 1, 0], dtype=np.float32) # need to be normalized! | |
# pose | |
def pose(self): | |
# first move camera to radius | |
res = np.eye(4, dtype=np.float32) | |
res[2, 3] -= self.radius | |
# rotate | |
rot = np.eye(4, dtype=np.float32) | |
rot[:3, :3] = self.rot.as_matrix() | |
res = rot @ res | |
# translate | |
res[:3, 3] -= self.center | |
return res | |
# intrinsics | |
def intrinsics(self): | |
focal = self.H / (2 * np.tan(np.deg2rad(self.fovy) / 2)) | |
return np.array([focal, focal, self.W // 2, self.H // 2]) | |
def orbit(self, dx, dy): | |
# rotate along camera up/side axis! | |
side = self.rot.as_matrix()[:3, 0] # why this is side --> ? # already normalized. | |
rotvec_x = self.up * np.deg2rad(-0.1 * dx) | |
rotvec_y = side * np.deg2rad(-0.1 * dy) | |
self.rot = R.from_rotvec(rotvec_x) * R.from_rotvec(rotvec_y) * self.rot | |
def scale(self, delta): | |
self.radius *= 1.1 ** (-delta) | |
def pan(self, dx, dy, dz=0): | |
# pan in camera coordinate system (careful on the sensitivity!) | |
self.center += 0.0005 * self.rot.as_matrix()[:3, :3] @ np.array([dx, dy, dz]) | |
class NeRFGUI: | |
def __init__(self, opt, trainer, debug=True): | |
self.opt = opt # shared with the trainer's opt to support in-place modification of rendering parameters. | |
self.W = opt.W | |
self.H = opt.H | |
self.cam = OrbitCamera(opt.W, opt.H, r=opt.radius, fovy=opt.fovy) | |
self.debug = debug | |
self.bg_color = torch.ones(3, dtype=torch.float32) # default white bg | |
self.training = False | |
self.step = 0 # training step | |
self.trainer = trainer | |
self.render_buffer = np.zeros((self.W, self.H, 3), dtype=np.float32) | |
self.need_update = True # camera moved, should reset accumulation | |
self.spp = 1 # sample per pixel | |
self.light_dir = np.array([opt.light_theta, opt.light_phi]) | |
self.ambient_ratio = 1.0 | |
self.mode = 'image' # choose from ['image', 'depth'] | |
self.shading = 'albedo' | |
self.dynamic_resolution = True | |
self.downscale = 1 | |
self.train_steps = 16 | |
dpg.create_context() | |
self.register_dpg() | |
self.test_step() | |
def __del__(self): | |
dpg.destroy_context() | |
def train_step(self): | |
starter, ender = torch.cuda.Event(enable_timing=True), torch.cuda.Event(enable_timing=True) | |
starter.record() | |
outputs = self.trainer.train_gui(self.trainer.train_loader, step=self.train_steps) | |
ender.record() | |
torch.cuda.synchronize() | |
t = starter.elapsed_time(ender) | |
self.step += self.train_steps | |
self.need_update = True | |
dpg.set_value("_log_train_time", f'{t:.4f}ms ({int(1000/t)} FPS)') | |
dpg.set_value("_log_train_log", f'step = {self.step: 5d} (+{self.train_steps: 2d}), loss = {outputs["loss"]:.4f}, lr = {outputs["lr"]:.5f}') | |
# dynamic train steps | |
# max allowed train time per-frame is 500 ms | |
full_t = t / self.train_steps * 16 | |
train_steps = min(16, max(4, int(16 * 500 / full_t))) | |
if train_steps > self.train_steps * 1.2 or train_steps < self.train_steps * 0.8: | |
self.train_steps = train_steps | |
def prepare_buffer(self, outputs): | |
if self.mode == 'image': | |
return outputs['image'] | |
else: | |
return np.expand_dims(outputs['depth'], -1).repeat(3, -1) | |
def test_step(self): | |
if self.need_update or self.spp < self.opt.max_spp: | |
starter, ender = torch.cuda.Event(enable_timing=True), torch.cuda.Event(enable_timing=True) | |
starter.record() | |
outputs = self.trainer.test_gui(self.cam.pose, self.cam.intrinsics, self.W, self.H, self.bg_color, self.spp, self.downscale, self.light_dir, self.ambient_ratio, self.shading) | |
ender.record() | |
torch.cuda.synchronize() | |
t = starter.elapsed_time(ender) | |
# update dynamic resolution | |
if self.dynamic_resolution: | |
# max allowed infer time per-frame is 200 ms | |
full_t = t / (self.downscale ** 2) | |
downscale = min(1, max(1/4, math.sqrt(200 / full_t))) | |
if downscale > self.downscale * 1.2 or downscale < self.downscale * 0.8: | |
self.downscale = downscale | |
if self.need_update: | |
self.render_buffer = self.prepare_buffer(outputs) | |
self.spp = 1 | |
self.need_update = False | |
else: | |
self.render_buffer = (self.render_buffer * self.spp + self.prepare_buffer(outputs)) / (self.spp + 1) | |
self.spp += 1 | |
dpg.set_value("_log_infer_time", f'{t:.4f}ms ({int(1000/t)} FPS)') | |
dpg.set_value("_log_resolution", f'{int(self.downscale * self.W)}x{int(self.downscale * self.H)}') | |
dpg.set_value("_log_spp", self.spp) | |
dpg.set_value("_texture", self.render_buffer) | |
def register_dpg(self): | |
### register texture | |
with dpg.texture_registry(show=False): | |
dpg.add_raw_texture(self.W, self.H, self.render_buffer, format=dpg.mvFormat_Float_rgb, tag="_texture") | |
### register window | |
# the rendered image, as the primary window | |
with dpg.window(tag="_primary_window", width=self.W, height=self.H): | |
# add the texture | |
dpg.add_image("_texture") | |
dpg.set_primary_window("_primary_window", True) | |
# control window | |
with dpg.window(label="Control", tag="_control_window", width=400, height=300): | |
# text prompt | |
if self.opt.text is not None: | |
dpg.add_text("text: " + self.opt.text, tag="_log_prompt_text") | |
# button theme | |
with dpg.theme() as theme_button: | |
with dpg.theme_component(dpg.mvButton): | |
dpg.add_theme_color(dpg.mvThemeCol_Button, (23, 3, 18)) | |
dpg.add_theme_color(dpg.mvThemeCol_ButtonHovered, (51, 3, 47)) | |
dpg.add_theme_color(dpg.mvThemeCol_ButtonActive, (83, 18, 83)) | |
dpg.add_theme_style(dpg.mvStyleVar_FrameRounding, 5) | |
dpg.add_theme_style(dpg.mvStyleVar_FramePadding, 3, 3) | |
# time | |
if not self.opt.test: | |
with dpg.group(horizontal=True): | |
dpg.add_text("Train time: ") | |
dpg.add_text("no data", tag="_log_train_time") | |
with dpg.group(horizontal=True): | |
dpg.add_text("Infer time: ") | |
dpg.add_text("no data", tag="_log_infer_time") | |
with dpg.group(horizontal=True): | |
dpg.add_text("SPP: ") | |
dpg.add_text("1", tag="_log_spp") | |
# train button | |
if not self.opt.test: | |
with dpg.collapsing_header(label="Train", default_open=True): | |
with dpg.group(horizontal=True): | |
dpg.add_text("Train: ") | |
def callback_train(sender, app_data): | |
if self.training: | |
self.training = False | |
dpg.configure_item("_button_train", label="start") | |
else: | |
self.training = True | |
dpg.configure_item("_button_train", label="stop") | |
dpg.add_button(label="start", tag="_button_train", callback=callback_train) | |
dpg.bind_item_theme("_button_train", theme_button) | |
def callback_reset(sender, app_data): | |
def weight_reset(m: nn.Module): | |
reset_parameters = getattr(m, "reset_parameters", None) | |
if callable(reset_parameters): | |
m.reset_parameters() | |
self.trainer.model.apply(fn=weight_reset) | |
self.trainer.model.reset_extra_state() # for cuda_ray density_grid and step_counter | |
self.need_update = True | |
dpg.add_button(label="reset", tag="_button_reset", callback=callback_reset) | |
dpg.bind_item_theme("_button_reset", theme_button) | |
with dpg.group(horizontal=True): | |
dpg.add_text("Checkpoint: ") | |
def callback_save(sender, app_data): | |
self.trainer.save_checkpoint(full=True, best=False) | |
dpg.set_value("_log_ckpt", "saved " + os.path.basename(self.trainer.stats["checkpoints"][-1])) | |
self.trainer.epoch += 1 # use epoch to indicate different calls. | |
dpg.add_button(label="save", tag="_button_save", callback=callback_save) | |
dpg.bind_item_theme("_button_save", theme_button) | |
dpg.add_text("", tag="_log_ckpt") | |
# save mesh | |
with dpg.group(horizontal=True): | |
dpg.add_text("Marching Cubes: ") | |
def callback_mesh(sender, app_data): | |
self.trainer.save_mesh(resolution=256, threshold=10) | |
dpg.set_value("_log_mesh", "saved " + f'{self.trainer.name}_{self.trainer.epoch}.ply') | |
self.trainer.epoch += 1 # use epoch to indicate different calls. | |
dpg.add_button(label="mesh", tag="_button_mesh", callback=callback_mesh) | |
dpg.bind_item_theme("_button_mesh", theme_button) | |
dpg.add_text("", tag="_log_mesh") | |
with dpg.group(horizontal=True): | |
dpg.add_text("", tag="_log_train_log") | |
# rendering options | |
with dpg.collapsing_header(label="Options", default_open=True): | |
# dynamic rendering resolution | |
with dpg.group(horizontal=True): | |
def callback_set_dynamic_resolution(sender, app_data): | |
if self.dynamic_resolution: | |
self.dynamic_resolution = False | |
self.downscale = 1 | |
else: | |
self.dynamic_resolution = True | |
self.need_update = True | |
dpg.add_checkbox(label="dynamic resolution", default_value=self.dynamic_resolution, callback=callback_set_dynamic_resolution) | |
dpg.add_text(f"{self.W}x{self.H}", tag="_log_resolution") | |
# mode combo | |
def callback_change_mode(sender, app_data): | |
self.mode = app_data | |
self.need_update = True | |
dpg.add_combo(('image', 'depth'), label='mode', default_value=self.mode, callback=callback_change_mode) | |
# bg_color picker | |
def callback_change_bg(sender, app_data): | |
self.bg_color = torch.tensor(app_data[:3], dtype=torch.float32) # only need RGB in [0, 1] | |
self.need_update = True | |
dpg.add_color_edit((255, 255, 255), label="Background Color", width=200, tag="_color_editor", no_alpha=True, callback=callback_change_bg) | |
# fov slider | |
def callback_set_fovy(sender, app_data): | |
self.cam.fovy = app_data | |
self.need_update = True | |
dpg.add_slider_int(label="FoV (vertical)", min_value=1, max_value=120, format="%d deg", default_value=self.cam.fovy, callback=callback_set_fovy) | |
# dt_gamma slider | |
def callback_set_dt_gamma(sender, app_data): | |
self.opt.dt_gamma = app_data | |
self.need_update = True | |
dpg.add_slider_float(label="dt_gamma", min_value=0, max_value=0.1, format="%.5f", default_value=self.opt.dt_gamma, callback=callback_set_dt_gamma) | |
# max_steps slider | |
def callback_set_max_steps(sender, app_data): | |
self.opt.max_steps = app_data | |
self.need_update = True | |
dpg.add_slider_int(label="max steps", min_value=1, max_value=1024, format="%d", default_value=self.opt.max_steps, callback=callback_set_max_steps) | |
# aabb slider | |
def callback_set_aabb(sender, app_data, user_data): | |
# user_data is the dimension for aabb (xmin, ymin, zmin, xmax, ymax, zmax) | |
self.trainer.model.aabb_infer[user_data] = app_data | |
# also change train aabb ? [better not...] | |
#self.trainer.model.aabb_train[user_data] = app_data | |
self.need_update = True | |
dpg.add_separator() | |
dpg.add_text("Axis-aligned bounding box:") | |
with dpg.group(horizontal=True): | |
dpg.add_slider_float(label="x", width=150, min_value=-self.opt.bound, max_value=0, format="%.2f", default_value=-self.opt.bound, callback=callback_set_aabb, user_data=0) | |
dpg.add_slider_float(label="", width=150, min_value=0, max_value=self.opt.bound, format="%.2f", default_value=self.opt.bound, callback=callback_set_aabb, user_data=3) | |
with dpg.group(horizontal=True): | |
dpg.add_slider_float(label="y", width=150, min_value=-self.opt.bound, max_value=0, format="%.2f", default_value=-self.opt.bound, callback=callback_set_aabb, user_data=1) | |
dpg.add_slider_float(label="", width=150, min_value=0, max_value=self.opt.bound, format="%.2f", default_value=self.opt.bound, callback=callback_set_aabb, user_data=4) | |
with dpg.group(horizontal=True): | |
dpg.add_slider_float(label="z", width=150, min_value=-self.opt.bound, max_value=0, format="%.2f", default_value=-self.opt.bound, callback=callback_set_aabb, user_data=2) | |
dpg.add_slider_float(label="", width=150, min_value=0, max_value=self.opt.bound, format="%.2f", default_value=self.opt.bound, callback=callback_set_aabb, user_data=5) | |
# light dir | |
def callback_set_light_dir(sender, app_data, user_data): | |
self.light_dir[user_data] = app_data | |
self.need_update = True | |
dpg.add_separator() | |
dpg.add_text("Plane Light Direction:") | |
with dpg.group(horizontal=True): | |
dpg.add_slider_float(label="theta", min_value=0, max_value=180, format="%.2f", default_value=self.opt.light_theta, callback=callback_set_light_dir, user_data=0) | |
with dpg.group(horizontal=True): | |
dpg.add_slider_float(label="phi", min_value=0, max_value=360, format="%.2f", default_value=self.opt.light_phi, callback=callback_set_light_dir, user_data=1) | |
# ambient ratio | |
def callback_set_abm_ratio(sender, app_data): | |
self.ambient_ratio = app_data | |
self.need_update = True | |
dpg.add_slider_float(label="ambient", min_value=0, max_value=1.0, format="%.5f", default_value=self.ambient_ratio, callback=callback_set_abm_ratio) | |
# shading mode | |
def callback_change_shading(sender, app_data): | |
self.shading = app_data | |
self.need_update = True | |
dpg.add_combo(('albedo', 'lambertian', 'textureless', 'normal'), label='shading', default_value=self.shading, callback=callback_change_shading) | |
# debug info | |
if self.debug: | |
with dpg.collapsing_header(label="Debug"): | |
# pose | |
dpg.add_separator() | |
dpg.add_text("Camera Pose:") | |
dpg.add_text(str(self.cam.pose), tag="_log_pose") | |
### register camera handler | |
def callback_camera_drag_rotate(sender, app_data): | |
if not dpg.is_item_focused("_primary_window"): | |
return | |
dx = app_data[1] | |
dy = app_data[2] | |
self.cam.orbit(dx, dy) | |
self.need_update = True | |
if self.debug: | |
dpg.set_value("_log_pose", str(self.cam.pose)) | |
def callback_camera_wheel_scale(sender, app_data): | |
if not dpg.is_item_focused("_primary_window"): | |
return | |
delta = app_data | |
self.cam.scale(delta) | |
self.need_update = True | |
if self.debug: | |
dpg.set_value("_log_pose", str(self.cam.pose)) | |
def callback_camera_drag_pan(sender, app_data): | |
if not dpg.is_item_focused("_primary_window"): | |
return | |
dx = app_data[1] | |
dy = app_data[2] | |
self.cam.pan(dx, dy) | |
self.need_update = True | |
if self.debug: | |
dpg.set_value("_log_pose", str(self.cam.pose)) | |
with dpg.handler_registry(): | |
dpg.add_mouse_drag_handler(button=dpg.mvMouseButton_Left, callback=callback_camera_drag_rotate) | |
dpg.add_mouse_wheel_handler(callback=callback_camera_wheel_scale) | |
dpg.add_mouse_drag_handler(button=dpg.mvMouseButton_Middle, callback=callback_camera_drag_pan) | |
dpg.create_viewport(title='torch-ngp', width=self.W, height=self.H, resizable=False) | |
# TODO: seems dearpygui doesn't support resizing texture... | |
# def callback_resize(sender, app_data): | |
# self.W = app_data[0] | |
# self.H = app_data[1] | |
# # how to reload texture ??? | |
# dpg.set_viewport_resize_callback(callback_resize) | |
### global theme | |
with dpg.theme() as theme_no_padding: | |
with dpg.theme_component(dpg.mvAll): | |
# set all padding to 0 to avoid scroll bar | |
dpg.add_theme_style(dpg.mvStyleVar_WindowPadding, 0, 0, category=dpg.mvThemeCat_Core) | |
dpg.add_theme_style(dpg.mvStyleVar_FramePadding, 0, 0, category=dpg.mvThemeCat_Core) | |
dpg.add_theme_style(dpg.mvStyleVar_CellPadding, 0, 0, category=dpg.mvThemeCat_Core) | |
dpg.bind_item_theme("_primary_window", theme_no_padding) | |
dpg.setup_dearpygui() | |
#dpg.show_metrics() | |
dpg.show_viewport() | |
def render(self): | |
while dpg.is_dearpygui_running(): | |
# update texture every frame | |
if self.training: | |
self.train_step() | |
self.test_step() | |
dpg.render_dearpygui_frame() |