akhaliq's picture
akhaliq HF staff
Update app.py
451ddb5
raw
history blame contribute delete
No virus
6.01 kB
#!/usr/bin/env python
from __future__ import annotations
import shutil
import tempfile
import gradio as gr
from huggingface_hub import HfApi
from huggingface_hub import create_repo
from huggingface_hub.repocard import RepoCard
title = 'dreambooth space creator'
description = '''
With this Space, you can create a dreambooth gradio demos for models that are loadable with `gradio.Interface.load` in [Model Hub](https://huggingface.co/models).
The Space will be created under your account and private.
You need a token with write permission (See: https://huggingface.co/settings/tokens).
You can specify multiple model names by listing them separated by commas.
If you specify multiple model names, the resulting Space will show all the outputs of those models side by side for the given inputs.
'''
article = ''
examples = [
[
'Dungeons-and-Diffusion',
'0xJustin/Dungeons-and-Diffusion',
'',
'Demo for 0xJustin/Dungeons-and-Diffusion',
'',
'',
],
[
'compare-image-classification-models',
'google/vit-base-patch16-224, microsoft/resnet-50',
'',
'Compare Image Classification Models',
'',
'',
],
[
'compare-text-generation-models',
'EleutherAI/gpt-j-6B, EleutherAI/gpt-neo-1.3B',
'',
'Compare Text Generation Models',
'',
'',
],
]
api = HfApi()
def check_if_model_exists(model_name: str) -> bool:
return any(info.modelId == model_name
for info in api.list_models(search=model_name))
def check_if_model_loadable(model_name: str) -> bool:
try:
gr.Interface.load(model_name, src='models')
except Exception:
return False
return True
def get_model_io_types(
model_name: str) -> tuple[tuple[str, ...], tuple[str, ...]]:
iface = gr.Interface.load(model_name, src='models')
inputs = tuple(map(str, iface.input_components))
outputs = tuple(map(str, iface.output_components))
return inputs, outputs
def check_if_model_io_is_consistent(model_names: list[str]) -> bool:
if len(model_names) == 1:
return True
inputs0, outputs0 = get_model_io_types(model_names[0])
for name in model_names[1:]:
inputs, outputs = get_model_io_types(name)
if inputs != inputs0 or outputs != outputs0:
return False
return True
def save_space_info(dirname: str, filename: str, content: str) -> None:
with open(f'{dirname}/{filename}', 'w') as f:
f.write(content)
def run(space_name: str, model_names_str: str, hf_token: str, title: str,
description: str, article: str) -> str:
if space_name == '':
return 'Space Name must be specified.'
if model_names_str == '':
return 'Model Names must be specified.'
if hf_token == '':
return 'Hugging Face Token must be specified.'
model_names = [name.strip() for name in model_names_str.split(',')]
model_names_str = '\n'.join(model_names)
missing_models = [
name for name in model_names if not check_if_model_exists(name)
]
if len(missing_models) > 0:
message = 'The following models were not found: '
for model_name in missing_models:
message += f'\n{model_name}'
return message
non_loadable_models = [
name for name in model_names if not check_if_model_loadable(name)
]
if len(non_loadable_models) > 0:
message = 'The following models are not loadable with gradio.Interface.load: '
for model_name in non_loadable_models:
message += f'\n{model_name}'
return message
if not check_if_model_io_is_consistent(model_names):
return 'The inputs and outputs of each model must be the same.'
user_name = api.whoami(token=hf_token)['name']
repo_id = f'{user_name}/{space_name}'
try:
space_url = api.create_repo(repo_id=repo_id,
repo_type='space',
private=True,
token=hf_token,
space_sdk='gradio')
card = RepoCard.load(repo_id, repo_type="space")
# Update to any version you like :)
card.data.sdk_version = "3.7.1"
# Push! Make sure to specify repo_type
readme_url = card.push_to_hub(repo_id, repo_type='space')
except Exception as e:
return str(e)
with tempfile.TemporaryDirectory() as temp_dir:
shutil.copy('assets/template.py', f'{temp_dir}/app.py')
save_space_info(temp_dir, 'TITLE', title)
save_space_info(temp_dir, 'DESCRIPTION', description)
save_space_info(temp_dir, 'ARTICLE', article)
save_space_info(temp_dir, 'MODEL_NAMES', model_names_str)
api.upload_folder(repo_id=repo_id,
folder_path=temp_dir,
path_in_repo='.',
token=hf_token,
repo_type='space')
return f'Successfully created: {space_url}'
gr.Interface(
fn=run,
inputs=[
gr.Textbox(
label='Space Name',
placeholder=
'e.g. demo-resnet-50. The Space will be created under your account and private.'
),
gr.Textbox(label='Model Names',
placeholder='e.g. microsoft/resnet-50'),
gr.Textbox(
label='Hugging Face Token',
placeholder=
'This should be a token with write permission. See: https://huggingface.co/settings/tokens'
),
gr.Textbox(label='Title (Optional)'),
gr.Textbox(label='Description (Optional)'),
gr.Textbox(label='Article (Optional)'),
],
outputs=gr.Textbox(label='Output'),
title=title,
description=description,
article=article,
examples=examples,
cache_examples=False,
).launch(enable_queue=True, share=False)