lama / saicinpainting /training /losses /distance_weighting.py
AK391
files
d380b77
raw
history blame
5.45 kB
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision
from saicinpainting.training.losses.perceptual import IMAGENET_STD, IMAGENET_MEAN
def dummy_distance_weighter(real_img, pred_img, mask):
return mask
def get_gauss_kernel(kernel_size, width_factor=1):
coords = torch.stack(torch.meshgrid(torch.arange(kernel_size),
torch.arange(kernel_size)),
dim=0).float()
diff = torch.exp(-((coords - kernel_size // 2) ** 2).sum(0) / kernel_size / width_factor)
diff /= diff.sum()
return diff
class BlurMask(nn.Module):
def __init__(self, kernel_size=5, width_factor=1):
super().__init__()
self.filter = nn.Conv2d(1, 1, kernel_size, padding=kernel_size // 2, padding_mode='replicate', bias=False)
self.filter.weight.data.copy_(get_gauss_kernel(kernel_size, width_factor=width_factor))
def forward(self, real_img, pred_img, mask):
with torch.no_grad():
result = self.filter(mask) * mask
return result
class EmulatedEDTMask(nn.Module):
def __init__(self, dilate_kernel_size=5, blur_kernel_size=5, width_factor=1):
super().__init__()
self.dilate_filter = nn.Conv2d(1, 1, dilate_kernel_size, padding=dilate_kernel_size// 2, padding_mode='replicate',
bias=False)
self.dilate_filter.weight.data.copy_(torch.ones(1, 1, dilate_kernel_size, dilate_kernel_size, dtype=torch.float))
self.blur_filter = nn.Conv2d(1, 1, blur_kernel_size, padding=blur_kernel_size // 2, padding_mode='replicate', bias=False)
self.blur_filter.weight.data.copy_(get_gauss_kernel(blur_kernel_size, width_factor=width_factor))
def forward(self, real_img, pred_img, mask):
with torch.no_grad():
known_mask = 1 - mask
dilated_known_mask = (self.dilate_filter(known_mask) > 1).float()
result = self.blur_filter(1 - dilated_known_mask) * mask
return result
class PropagatePerceptualSim(nn.Module):
def __init__(self, level=2, max_iters=10, temperature=500, erode_mask_size=3):
super().__init__()
vgg = torchvision.models.vgg19(pretrained=True).features
vgg_avg_pooling = []
for weights in vgg.parameters():
weights.requires_grad = False
cur_level_i = 0
for module in vgg.modules():
if module.__class__.__name__ == 'Sequential':
continue
elif module.__class__.__name__ == 'MaxPool2d':
vgg_avg_pooling.append(nn.AvgPool2d(kernel_size=2, stride=2, padding=0))
else:
vgg_avg_pooling.append(module)
if module.__class__.__name__ == 'ReLU':
cur_level_i += 1
if cur_level_i == level:
break
self.features = nn.Sequential(*vgg_avg_pooling)
self.max_iters = max_iters
self.temperature = temperature
self.do_erode = erode_mask_size > 0
if self.do_erode:
self.erode_mask = nn.Conv2d(1, 1, erode_mask_size, padding=erode_mask_size // 2, bias=False)
self.erode_mask.weight.data.fill_(1)
def forward(self, real_img, pred_img, mask):
with torch.no_grad():
real_img = (real_img - IMAGENET_MEAN.to(real_img)) / IMAGENET_STD.to(real_img)
real_feats = self.features(real_img)
vertical_sim = torch.exp(-(real_feats[:, :, 1:] - real_feats[:, :, :-1]).pow(2).sum(1, keepdim=True)
/ self.temperature)
horizontal_sim = torch.exp(-(real_feats[:, :, :, 1:] - real_feats[:, :, :, :-1]).pow(2).sum(1, keepdim=True)
/ self.temperature)
mask_scaled = F.interpolate(mask, size=real_feats.shape[-2:], mode='bilinear', align_corners=False)
if self.do_erode:
mask_scaled = (self.erode_mask(mask_scaled) > 1).float()
cur_knowness = 1 - mask_scaled
for iter_i in range(self.max_iters):
new_top_knowness = F.pad(cur_knowness[:, :, :-1] * vertical_sim, (0, 0, 1, 0), mode='replicate')
new_bottom_knowness = F.pad(cur_knowness[:, :, 1:] * vertical_sim, (0, 0, 0, 1), mode='replicate')
new_left_knowness = F.pad(cur_knowness[:, :, :, :-1] * horizontal_sim, (1, 0, 0, 0), mode='replicate')
new_right_knowness = F.pad(cur_knowness[:, :, :, 1:] * horizontal_sim, (0, 1, 0, 0), mode='replicate')
new_knowness = torch.stack([new_top_knowness, new_bottom_knowness,
new_left_knowness, new_right_knowness],
dim=0).max(0).values
cur_knowness = torch.max(cur_knowness, new_knowness)
cur_knowness = F.interpolate(cur_knowness, size=mask.shape[-2:], mode='bilinear')
result = torch.min(mask, 1 - cur_knowness)
return result
def make_mask_distance_weighter(kind='none', **kwargs):
if kind == 'none':
return dummy_distance_weighter
if kind == 'blur':
return BlurMask(**kwargs)
if kind == 'edt':
return EmulatedEDTMask(**kwargs)
if kind == 'pps':
return PropagatePerceptualSim(**kwargs)
raise ValueError(f'Unknown mask distance weighter kind {kind}')