Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| from transformers import AutoModelForCausalLM, AutoTokenizer | |
| from peft import PeftModel | |
| import torch | |
| import os | |
| HF_TOKEN = os.environ.get("HF_TOKEN") | |
| # Load the base model and adapter for Model 1 | |
| base_model_name = "google/gemma-2b-it" # or the correct base model | |
| adapter_model_name = "akhaliq/gemma-3-270m-gradio-coder-adapter" | |
| # Initialize Model 1 (with adapter) | |
| print("Loading Model 1 with adapter...") | |
| tokenizer1 = AutoTokenizer.from_pretrained(adapter_model_name) | |
| base_model1 = AutoModelForCausalLM.from_pretrained( | |
| base_model_name, | |
| torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32, | |
| device_map="auto" if torch.cuda.is_available() else None, | |
| token=HF_TOKEN | |
| ) | |
| model1 = PeftModel.from_pretrained(base_model1, adapter_model_name) | |
| model1.eval() | |
| # Initialize Model 2 (standard model) | |
| print("Loading Model 2...") | |
| model2_name = "google/gemma-2b-it" # Using gemma-2b-it as gemma-3-270m-it might not exist | |
| tokenizer2 = AutoTokenizer.from_pretrained(model2_name, token=HF_TOKEN) | |
| model2 = AutoModelForCausalLM.from_pretrained( | |
| model2_name, | |
| torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32, | |
| device_map="auto" if torch.cuda.is_available() else None, | |
| token=HF_TOKEN | |
| ) | |
| model2.eval() | |
| def generate_code(user_input, model, tokenizer, model_name="Model"): | |
| """ | |
| Generate code based on user input using the selected model | |
| """ | |
| # Format the prompt for code generation | |
| prompt = f"<start_of_turn>user\n{user_input}<end_of_turn>\n<start_of_turn>model\n" | |
| # Tokenize input | |
| inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=512) | |
| # Move to same device as model | |
| if torch.cuda.is_available(): | |
| inputs = {k: v.cuda() for k, v in inputs.items()} | |
| # Generate response | |
| with torch.no_grad(): | |
| outputs = model.generate( | |
| **inputs, | |
| max_new_tokens=512, | |
| temperature=0.7, | |
| do_sample=True, | |
| top_p=0.9, | |
| pad_token_id=tokenizer.pad_token_id, | |
| eos_token_id=tokenizer.eos_token_id, | |
| ) | |
| # Decode the output | |
| generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
| # Extract only the model's response | |
| if "<start_of_turn>model" in generated_text: | |
| response = generated_text.split("<start_of_turn>model")[-1].strip() | |
| elif user_input in generated_text: | |
| response = generated_text.split(user_input)[-1].strip() | |
| else: | |
| response = generated_text | |
| # Clean up any remaining turn markers | |
| response = response.replace("<end_of_turn>", "").strip() | |
| return response | |
| def generate_both(user_input): | |
| """ | |
| Generate code from both models for comparison | |
| """ | |
| if not user_input.strip(): | |
| return "", "" | |
| try: | |
| output1 = generate_code(user_input, model1, tokenizer1, "Model 1 (Adapter)") | |
| except Exception as e: | |
| output1 = f"Error with Model 1: {str(e)}" | |
| try: | |
| output2 = generate_code(user_input, model2, tokenizer2, "Model 2 (Base)") | |
| except Exception as e: | |
| output2 = f"Error with Model 2: {str(e)}" | |
| return output1, output2 | |
| # Create the Gradio interface | |
| with gr.Blocks(title="Text to Code Generator - Model Comparison", theme=gr.themes.Soft()) as demo: | |
| gr.Markdown( | |
| """ | |
| # π Text to Code Generator - Model Comparison | |
| Compare code generation from two different Gemma models: | |
| - **Model 1**: Gemma with Gradio Coder Adapter (Fine-tuned) | |
| - **Model 2**: Base Gemma Model | |
| Simply describe what you want to build, and see how each model responds! | |
| """ | |
| ) | |
| with gr.Row(): | |
| with gr.Column(scale=1): | |
| # Input section | |
| input_text = gr.Textbox( | |
| label="Describe what you want to code", | |
| placeholder="e.g., Create a Python function that calculates the factorial of a number", | |
| lines=5, | |
| max_lines=10 | |
| ) | |
| with gr.Row(): | |
| generate_btn = gr.Button("Generate from Both Models", variant="primary", scale=2) | |
| clear_btn = gr.ClearButton([input_text], value="Clear", scale=1) | |
| # Examples section | |
| gr.Examples( | |
| examples=[ | |
| ["Create a Python function to check if a number is prime"], | |
| ["Write a JavaScript function to reverse a string"], | |
| ["Create a React component for a todo list item"], | |
| ["Write a SQL query to find the top 5 customers by total purchase amount"], | |
| ["Create a Python class for a bank account with deposit and withdraw methods"], | |
| ["Build a simple Gradio interface for text summarization"], | |
| ], | |
| inputs=input_text, | |
| label="Example Prompts" | |
| ) | |
| with gr.Column(scale=2): | |
| # Output section - Two columns for comparison | |
| with gr.Row(): | |
| with gr.Column(): | |
| gr.Markdown("### Model 1: With Gradio Coder Adapter") | |
| output_code1 = gr.Code( | |
| label="Generated Code (Model 1)", | |
| language="python", | |
| lines=15, | |
| interactive=True, | |
| show_label=False | |
| ) | |
| copy_btn1 = gr.Button("π Copy Code", size="sm") | |
| with gr.Column(): | |
| gr.Markdown("### Model 2: Base Gemma Model") | |
| output_code2 = gr.Code( | |
| label="Generated Code (Model 2)", | |
| language="python", | |
| lines=15, | |
| interactive=True, | |
| show_label=False | |
| ) | |
| copy_btn2 = gr.Button("π Copy Code", size="sm") | |
| # Add event handlers | |
| generate_btn.click( | |
| fn=generate_both, | |
| inputs=input_text, | |
| outputs=[output_code1, output_code2], | |
| api_name="generate" | |
| ) | |
| input_text.submit( | |
| fn=generate_both, | |
| inputs=input_text, | |
| outputs=[output_code1, output_code2] | |
| ) | |
| # Copy functionality for both outputs | |
| copy_btn1.click( | |
| None, | |
| inputs=output_code1, | |
| outputs=None, | |
| js=""" | |
| (code) => { | |
| navigator.clipboard.writeText(code); | |
| const btn = document.querySelector('button:has-text("π Copy Code")'); | |
| const originalText = btn.textContent; | |
| btn.textContent = 'β Copied!'; | |
| setTimeout(() => btn.textContent = originalText, 2000); | |
| return null; | |
| } | |
| """ | |
| ) | |
| copy_btn2.click( | |
| None, | |
| inputs=output_code2, | |
| outputs=None, | |
| js=""" | |
| (code) => { | |
| navigator.clipboard.writeText(code); | |
| const btns = document.querySelectorAll('button:has-text("π Copy Code")'); | |
| const btn = btns[1]; | |
| const originalText = btn.textContent; | |
| btn.textContent = 'β Copied!'; | |
| setTimeout(() => btn.textContent = originalText, 2000); | |
| return null; | |
| } | |
| """ | |
| ) | |
| # Footer | |
| gr.Markdown( | |
| """ | |
| --- | |
| π‘ **Tips:** | |
| - Be specific about the programming language you want | |
| - Include details about inputs, outputs, and edge cases | |
| - You can edit the generated code directly in the output box | |
| **Note:** The adapter model is specifically fine-tuned for generating Gradio code! | |
| """ | |
| ) | |
| # Launch the app | |
| if __name__ == "__main__": | |
| demo.launch() |