deeplab2 / model /utils.py
akhaliq3
spaces demo
506da10
# coding=utf-8
# Copyright 2021 The Deeplab2 Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""This file contains utility functions for the model code."""
from typing import Any, List, MutableMapping, MutableSequence, Optional, Set
import tensorflow as tf
from deeplab2 import common
from deeplab2 import config_pb2
layers = tf.keras.layers
_PREDICTION_WITH_NEAREST_UPSAMPLING = (
common.PRED_INSTANCE_KEY,
common.PRED_INSTANCE_CENTER_KEY,
common.PRED_INSTANCE_SCORES_KEY,
common.PRED_PANOPTIC_KEY,
common.PRED_SEMANTIC_KEY,
common.PRED_NEXT_PANOPTIC_KEY,
common.PRED_CONCAT_NEXT_PANOPTIC_KEY,
common.PRED_CENTER_HEATMAP_KEY,
)
_PREDICTION_WITH_BILINEAR_UPSAMPLING = (
common.PRED_SEMANTIC_PROBS_KEY,
common.PRED_OFFSET_MAP_KEY,
)
_INPUT_WITH_NEAREST_UPSAMPLING = (
common.GT_INSTANCE_CENTER_KEY,
)
_INPUT_WITH_BILINEAR_UPSAMPLING = (
common.IMAGE,
common.GT_INSTANCE_REGRESSION_KEY
)
def _scale_helper(value, scale):
if isinstance(value, tf.Tensor):
return tf.cast(
(tf.cast(value, dtype=tf.float32) - 1.0) * scale + 1.0,
dtype=tf.int32)
else:
return int((float(value) - 1.0) * scale + 1.0)
def scale_mutable_sequence(input_sequence: MutableSequence[int],
scale: float) -> MutableSequence[int]:
return [_scale_helper(x, scale) for x in input_sequence]
def scale_int_list(int_list, scale):
return [int(x * scale) for x in int_list]
def undo_image_preprocessing(image_in: tf.Tensor, method: str,
perform_crop: bool,
regions_to_crop: List[int],
output_shape: List[int]) -> tf.Tensor:
"""Undoes the image preprocessing.
In particular, this function slices out the valid regions (determined by
`regions_to_crop`) in the input when perform_crop is True. After
that, we resize the results to the desired `output_shape`.
Args:
image_in: Input image Tensor with shape [batch, height, width, n_channels].
method: Image resize method.
perform_crop: Boolean, performing crop or not.
regions_to_crop: The regions to crop [height, width]. Will only apply
cropping at the bottom right.
output_shape: Desired shape after resizing [height, width].
Returns:
Outputs after cropping (if perform_crop = True) and resizing.
"""
if perform_crop:
image_out = image_in[
:, :regions_to_crop[0], :regions_to_crop[1], :]
else:
image_out = image_in
return resize_align_corners(image_out, output_shape, method=method)
def undo_preprocessing(input_or_prediction_dict: MutableMapping[str, Any],
regions_to_crop: List[int],
output_shape: List[int]) -> MutableMapping[str, Any]:
"""Undoes preprocessing for predictions.
Args:
input_or_prediction_dict: A dictionary storing different types of inputs or
predictions.
regions_to_crop: The regions to crop [height, width]. Will only apply
cropping at the bottom right.
output_shape: Desired shape after resizing [height, width].
Returns:
inputs or predictions after cropping (if perform_crop = True) and resizing.
"""
for key in input_or_prediction_dict.keys():
if key in _PREDICTION_WITH_NEAREST_UPSAMPLING or key in _INPUT_WITH_NEAREST_UPSAMPLING:
input_or_prediction_dict[key] = tf.squeeze(
undo_image_preprocessing(
tf.expand_dims(input_or_prediction_dict[key], 3),
'nearest',
perform_crop=True,
regions_to_crop=regions_to_crop,
output_shape=output_shape),
axis=3)
elif key in _PREDICTION_WITH_BILINEAR_UPSAMPLING or key in _INPUT_WITH_BILINEAR_UPSAMPLING:
input_or_prediction_dict[key] = undo_image_preprocessing(
input_or_prediction_dict[key],
'bilinear',
perform_crop=True,
regions_to_crop=regions_to_crop,
output_shape=output_shape)
else:
# We only undo preprocessing for those defined in
# _{PREDICTION,INPUT}_WITH_{NEAREST,BILINEAR}_UPSAMPLING.
# Other intermediate results are skipped.
continue
return input_or_prediction_dict
def add_zero_padding(input_tensor: tf.Tensor, kernel_size: int,
rank: int) -> tf.Tensor:
"""Adds zero-padding to the input_tensor."""
pad_total = kernel_size - 1
pad_begin = pad_total // 2
pad_end = pad_total - pad_begin
if rank == 3:
return tf.pad(
input_tensor,
paddings=[[pad_begin, pad_end], [pad_begin, pad_end], [0, 0]])
else:
return tf.pad(
input_tensor,
paddings=[[0, 0], [pad_begin, pad_end], [pad_begin, pad_end], [0, 0]])
def resize_and_rescale_offsets(input_tensor: tf.Tensor, target_size):
"""Bilinearly resizes and rescales the offsets.
Args:
input_tensor: A tf.Tensor of shape [batch, height, width, 2].
target_size: A list or tuple or 1D tf.Tensor that specifies the height and
width after resizing.
Returns:
The input_tensor resized to shape `[batch, target_height, target_width, 2]`.
Moreover, the offsets along the y-axis are rescaled by a factor equal to
(target_height - 1) / (reference_height - 1) and the offsets along the
x-axis are rescaled by a factor equal to
(target_width - 1) / (reference_width - 1).
"""
input_size_y = tf.shape(input_tensor)[1]
input_size_x = tf.shape(input_tensor)[2]
scale_y = tf.cast(target_size[0] - 1, tf.float32) / tf.cast(
input_size_y - 1, tf.float32)
scale_x = tf.cast(target_size[1] - 1, tf.float32) / tf.cast(
input_size_x - 1, tf.float32)
target_y, target_x = tf.split(
value=input_tensor, num_or_size_splits=2, axis=3)
target_y *= scale_y
target_x *= scale_x
target = tf.concat([target_y, target_x], 3)
return resize_bilinear(target, target_size)
def resize_align_corners(input_tensor, target_size, method='bilinear'):
"""Resizes the input_tensor to target_size.
This returns the same output as tf.compat.v1.image.resize(input_tensor,
target_size, align_corners=True).
Args:
input_tensor: A tf.Tensor of shape [batch, height, width, channels].
target_size: A list or tuple or 1D tf.Tensor that specifies the height and
width after resizing.
method: An optional string specifying the method used for resizing.
Supported options are 'nearest' and 'bilinear'.
Returns:
The resized tensor.
Raises:
ValueError: An error occurs if 1) the input tensor's rank is not 4 or 2) the
resizing method is not supported.
"""
if method == 'bilinear':
tf_method = tf.compat.v1.image.ResizeMethod.BILINEAR
elif method == 'nearest':
tf_method = tf.compat.v1.image.ResizeMethod.NEAREST_NEIGHBOR
else:
raise ValueError('The given method %s is not supported. Please use bilinear'
' or nearest.' % method)
tf.debugging.assert_rank(
input_tensor, 4,
message='Input tensor to resize method should have rank of 4.')
return tf.compat.v1.image.resize(
input_tensor,
target_size,
method=tf_method,
align_corners=True,
name='resize_align_corners')
def resize_bilinear(images,
size,
align_corners=True,
name=None):
"""TPU memory efficient version of tf.compat.v1.image.resize_bilinear.
ResizeBilinear on TPU requires padded batch and channel dimensions. On a
TPUv3, the worst case could lead to 256x memory consumption, if the
input is, for example, [1, 257, 513, 1]. In this function, we replace the
default resize_bilinear by two resize_bilinear operations, which put one image
axis on the channel axis. This reduces TPU padding when batch * channel is
small and height * width is large.
Args:
images: Input image of shape [B, H, W, C].
size: A list of two elements: [height, width]. The new size for the images.
align_corners: Whether to align corners of the image.
name: Name of the operation.
Returns:
Resized image.
"""
_, height, width, channel = images.get_shape().as_list()
if height == size[0] and width == size[1]:
return images
dtype = images.dtype
images = tf.cast(images, tf.float32)
# We check the channel axis only since the batch size is similar (usually 1 or
# 2). In this way, this if-else easily supports dynamic batch size without
# using tf.cond().
if channel > 32 or not align_corners:
images = tf.compat.v1.image.resize_bilinear(
images, size,
align_corners=align_corners,
name=name)
else:
images = tf.transpose(images, [0, 3, 1, 2])
images = tf.compat.v1.image.resize_bilinear(
images, [channel, size[0]],
align_corners=align_corners,
name=name + '_height' if name else None)
images = tf.transpose(images, [0, 1, 3, 2])
images = tf.compat.v1.image.resize_bilinear(
images, [channel, size[1]],
align_corners=align_corners,
name=name + '_width' if name else None)
images = tf.transpose(images, [0, 3, 2, 1])
return tf.cast(images, dtype)
def make_divisible(value: float,
divisor: int,
min_value: Optional[float] = None) -> int:
"""Ensures all layers have channels that are divisible by the divisor.
Args:
value: A `float` of original value.
divisor: An `int` of the divisor that needs to be checked upon.
min_value: A `float` of minimum value threshold.
Returns:
The adjusted value in `int` that is divisible by divisor.
Raises:
ValueError: Minimual value should be divisible by divisor.
"""
if min_value is None:
min_value = divisor
elif min_value % divisor != 0:
raise ValueError('Minimual value should be divisible by divisor.')
new_value = max(min_value, int(value + divisor / 2) // divisor * divisor)
# Make sure that round down does not go down by more than 10%.
if new_value < 0.9 * value:
new_value += divisor
return int(new_value)
def transpose_and_reshape_for_attention_operation(inputs):
"""Sequentially transposes and reshapes the tensor.
Args:
inputs: An input [batch, num_heads, length, channel] tensor.
Returns:
output: An output [batch, length, num_heads * channel] tensor.
"""
_, num_heads, length, channel = inputs.get_shape().as_list()
transposed_inputs = tf.transpose(inputs, [0, 2, 1, 3])
return tf.reshape(transposed_inputs, [-1, length, num_heads * channel])
def reshape_and_transpose_for_attention_operation(inputs, num_heads):
"""Sequentially reshapes and transposes the tensor.
Args:
inputs: An input [batch, length, num_heads * channel] tensor.
num_heads: An integer, the number of attention heads.
Returns:
output: An output [batch, num_heads, length, channel] tensor.
"""
_, length, channels = inputs.get_shape().as_list()
inputs = tf.reshape(inputs, [-1, length, num_heads, channels // num_heads])
return tf.transpose(inputs, [0, 2, 1, 3])
def get_layer_name(private_attribute_name):
if private_attribute_name[0] != '_':
raise ValueError('Private attribute name should start with a \'_\'.')
return private_attribute_name[1:]
def get_stem_current_name(index):
return '_basic_block{}'.format(index + 1)
def get_low_level_conv_fusion_conv_current_names(index):
return ('_low_level_conv{}'.format(index + 1),
'_fusion_conv{}'.format(index + 1))
def get_conv_bn_act_current_name(index, use_bn, activation):
name = '_conv{}'.format(index + 1)
if use_bn:
name += '_bn'
if (activation is not None and
activation.lower() != 'none' and
activation.lower() != 'linear'):
name += '_act'
return name
def safe_setattr(obj, name, value):
"""A conflict-safe version of setattr().
Different from setattr(), this function raises ValueError if the object
already has an attribute with the same name.
Args:
obj: An object whose attribute has to be set.
name: A string, the name of the attribute.
value: Any type, the value given to the attribute.
Raises:
ValueError: If the object already has an attribute with the same name.
"""
if hasattr(obj, name):
raise ValueError('The object already has an attribute with the same name.')
setattr(obj, name, value)
def pad_sequence_with_none(sequence, target_length):
return list(sequence) + [None] * (target_length - len(sequence))
def strided_downsample(input_tensor, target_size):
"""Strided downsamples a tensor to the target size.
The stride_height and stride_width is computed by (height - 1) //
(target_height - 1) and (width - 1) // (target_width - 1). We raise an error
if stride_height != stride_width, since this is not intended in our current
use cases. But this check can be removed if different strides are desired.
This function supports static shape only.
Args:
input_tensor: A [batch, height, width] tf.Tensor to be downsampled.
target_size: A list of two integers, [target_height, target_width], the
target size after downsampling.
Returns:
output_tensor: A [batch, target_height, target_width] tf.Tensor, the
downsampled result.
Raises:
ValueError: If the input cannot be downsampled with integer stride, i.e.,
(height - 1) % (target_height - 1) != 0, or (width - 1) % (target_width -
1) != 0.
ValueError: If the height axis stride does not equal to the width axis
stride.
"""
input_height, input_width = input_tensor.get_shape().as_list()[1:3]
target_height, target_width = target_size
if ((input_height - 1) % (target_height - 1) or
(input_width - 1) % (target_width - 1)):
raise ValueError('The input cannot be downsampled with integer striding. '
'Please ensure (height - 1) % (target_height - 1) == 0 '
'and (width - 1) % (target_width - 1) == 0.')
stride_height = (input_height - 1) // (target_height - 1)
stride_width = (input_width - 1) // (target_width - 1)
if stride_height != stride_width:
raise ValueError('The height axis stride does not equal to the width axis '
'stride.')
if stride_height > 1 or stride_width > 1:
return input_tensor[:, ::stride_height, ::stride_width]
return input_tensor
def get_stuff_class_ids(num_thing_stuff_classes: int,
thing_class_ids: List[int],
void_label: int) -> List[int]:
"""Computes stuff_class_ids.
The stuff_class_ids are computed from the num_thing_stuff_classes, the
thing_class_ids and the void_label.
Args:
num_thing_stuff_classes: An integer specifying the number of stuff and thing
classes, not including `void` class.
thing_class_ids: A List of integers of length [num_thing_classes] containing
thing class indices.
void_label: An integer specifying the void label.
Returns:
stuff_class_ids: A sorted List of integers of shape [num_stuff_classes]
containing stuff class indices.
"""
if void_label >= num_thing_stuff_classes:
thing_stuff_class_ids = list(range(num_thing_stuff_classes))
else:
thing_stuff_class_ids = [_ for _ in range(num_thing_stuff_classes + 1)
if _ is not void_label]
return sorted(set(thing_stuff_class_ids) - set(thing_class_ids))
def get_supported_tasks(
config: config_pb2.ExperimentOptions) -> Set[str]:
"""Gets currently supported tasks for each meta_architecture.
Args:
config: A config_pb2.ExperimentOptions configuration.
Returns:
supported_tasks: A set of strings (see common.py), optionally
- common.TASK_PANOPTIC_SEGMENTATION,
- common.TASK_INSTANCE_SEGMENTATION,
- common.TASK_VIDEO_PANOPTIC_SEGMENTATION,
"""
supported_tasks = set()
meta_architecture = config.model_options.WhichOneof('meta_architecture')
is_max_deeplab = meta_architecture == 'max_deeplab'
is_motion_deeplab = meta_architecture == 'motion_deeplab'
is_panoptic_deeplab = meta_architecture == 'panoptic_deeplab'
is_vip_deeplab = meta_architecture == 'vip_deeplab'
is_panoptic = (
(config.model_options.panoptic_deeplab.instance.enable and
is_panoptic_deeplab) or
is_motion_deeplab or is_max_deeplab or is_vip_deeplab)
if is_panoptic:
supported_tasks.add(common.TASK_PANOPTIC_SEGMENTATION)
# MaX-DeepLab does not support evaluating instance segmentation mask AP yet.
if not is_max_deeplab:
supported_tasks.add(common.TASK_INSTANCE_SEGMENTATION)
if is_motion_deeplab or is_vip_deeplab:
supported_tasks.add(common.TASK_VIDEO_PANOPTIC_SEGMENTATION)
if is_vip_deeplab:
supported_tasks.add(common.TASK_DEPTH_AWARE_VIDEO_PANOPTIC_SEGMENTATION)
return supported_tasks