deeplab2 / evaluation /panoptic_quality.py
akhaliq3
spaces demo
506da10
# coding=utf-8
# Copyright 2021 The Deeplab2 Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Implementation of the Panoptic Quality metric.
Panoptic Quality is an instance-based metric for evaluating the task of
image parsing, aka panoptic segmentation.
Please see the paper for details:
"Panoptic Segmentation", Alexander Kirillov, Kaiming He, Ross Girshick,
Carsten Rother and Piotr Dollar. arXiv:1801.00868, 2018.
"""
from typing import Any, List, Mapping, Optional, Tuple
import numpy as np
import tensorflow as tf
def _ids_to_counts(id_array: np.ndarray) -> Mapping[int, int]:
"""Given a numpy array, a mapping from each unique entry to its count."""
ids, counts = np.unique(id_array, return_counts=True)
return dict(zip(ids, counts))
class PanopticQuality(tf.keras.metrics.Metric):
"""Metric class for Panoptic Quality.
"Panoptic Segmentation" by Alexander Kirillov, Kaiming He, Ross Girshick,
Carsten Rother, Piotr Dollar.
https://arxiv.org/abs/1801.00868
Stand-alone usage:
pq_obj = panoptic_quality.PanopticQuality(num_classes,
max_instances_per_category, ignored_label)
pq_obj.update_state(y_true_1, y_pred_1)
pq_obj.update_state(y_true_2, y_pred_2)
...
result = pq_obj.result().numpy()
"""
def __init__(self,
num_classes: int,
ignored_label: int,
max_instances_per_category: int,
offset: int,
name: str = 'panoptic_quality',
**kwargs):
"""Initialization of the PanopticQuality metric.
Args:
num_classes: Number of classes in the dataset as an integer.
ignored_label: The class id to be ignored in evaluation as an integer or
integer tensor.
max_instances_per_category: The maximum number of instances for each class
as an integer or integer tensor.
offset: The maximum number of unique labels as an integer or integer
tensor.
name: An optional variable_scope name. (default: 'panoptic_quality')
**kwargs: The keyword arguments that are passed on to `fn`.
"""
super(PanopticQuality, self).__init__(name=name, **kwargs)
self.num_classes = num_classes
self.ignored_label = ignored_label
self.max_instances_per_category = max_instances_per_category
self.total_iou = self.add_weight(
'total_iou', shape=(num_classes,), initializer=tf.zeros_initializer)
self.total_tp = self.add_weight(
'total_tp', shape=(num_classes,), initializer=tf.zeros_initializer)
self.total_fn = self.add_weight(
'total_fn', shape=(num_classes,), initializer=tf.zeros_initializer)
self.total_fp = self.add_weight(
'total_fp', shape=(num_classes,), initializer=tf.zeros_initializer)
self.offset = offset
def compare_and_accumulate(
self, gt_panoptic_label: tf.Tensor, pred_panoptic_label: tf.Tensor
) -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]:
"""Compares predicted segmentation with groundtruth, accumulates its metric.
It is not assumed that instance ids are unique across different categories.
See for example combine_semantic_and_instance_predictions.py in official
PanopticAPI evaluation code for issues to consider when fusing category
and instance labels.
Instances ids of the ignored category have the meaning that id 0 is "void"
and remaining ones are crowd instances.
Args:
gt_panoptic_label: A tensor that combines label array from categories and
instances for ground truth.
pred_panoptic_label: A tensor that combines label array from categories
and instances for the prediction.
Returns:
The value of the metrics (iou, tp, fn, fp) over all comparisons, as a
float scalar.
"""
iou_per_class = np.zeros(self.num_classes, dtype=np.float64)
tp_per_class = np.zeros(self.num_classes, dtype=np.float64)
fn_per_class = np.zeros(self.num_classes, dtype=np.float64)
fp_per_class = np.zeros(self.num_classes, dtype=np.float64)
# Pre-calculate areas for all groundtruth and predicted segments.
gt_segment_areas = _ids_to_counts(gt_panoptic_label.numpy())
pred_segment_areas = _ids_to_counts(pred_panoptic_label.numpy())
# We assume the ignored segment has instance id = 0.
ignored_panoptic_id = self.ignored_label * self.max_instances_per_category
# Next, combine the groundtruth and predicted labels. Dividing up the pixels
# based on which groundtruth segment and which predicted segment they belong
# to, this will assign a different 64-bit integer label to each choice
# of (groundtruth segment, predicted segment), encoded as
# gt_panoptic_label * offset + pred_panoptic_label.
intersection_id_array = tf.cast(gt_panoptic_label,
tf.int64) * self.offset + tf.cast(
pred_panoptic_label, tf.int64)
# For every combination of (groundtruth segment, predicted segment) with a
# non-empty intersection, this counts the number of pixels in that
# intersection.
intersection_areas = _ids_to_counts(intersection_id_array.numpy())
# Compute overall ignored overlap.
def prediction_ignored_overlap(pred_panoptic_label):
intersection_id = ignored_panoptic_id * self.offset + pred_panoptic_label
return intersection_areas.get(intersection_id, 0)
# Sets that are populated with which segments groundtruth/predicted segments
# have been matched with overlapping predicted/groundtruth segments
# respectively.
gt_matched = set()
pred_matched = set()
# Calculate IoU per pair of intersecting segments of the same category.
for intersection_id, intersection_area in intersection_areas.items():
gt_panoptic_label = intersection_id // self.offset
pred_panoptic_label = intersection_id % self.offset
gt_category = gt_panoptic_label // self.max_instances_per_category
pred_category = pred_panoptic_label // self.max_instances_per_category
if gt_category != pred_category:
continue
if pred_category == self.ignored_label:
continue
# Union between the groundtruth and predicted segments being compared does
# not include the portion of the predicted segment that consists of
# groundtruth "void" pixels.
union = (
gt_segment_areas[gt_panoptic_label] +
pred_segment_areas[pred_panoptic_label] - intersection_area -
prediction_ignored_overlap(pred_panoptic_label))
iou = intersection_area / union
if iou > 0.5:
tp_per_class[gt_category] += 1
iou_per_class[gt_category] += iou
gt_matched.add(gt_panoptic_label)
pred_matched.add(pred_panoptic_label)
# Count false negatives for each category.
for gt_panoptic_label in gt_segment_areas:
if gt_panoptic_label in gt_matched:
continue
category = gt_panoptic_label // self.max_instances_per_category
# Failing to detect a void segment is not a false negative.
if category == self.ignored_label:
continue
fn_per_class[category] += 1
# Count false positives for each category.
for pred_panoptic_label in pred_segment_areas:
if pred_panoptic_label in pred_matched:
continue
# A false positive is not penalized if is mostly ignored in the
# groundtruth.
if (prediction_ignored_overlap(pred_panoptic_label) /
pred_segment_areas[pred_panoptic_label]) > 0.5:
continue
category = pred_panoptic_label // self.max_instances_per_category
if category == self.ignored_label:
continue
fp_per_class[category] += 1
return iou_per_class, tp_per_class, fn_per_class, fp_per_class
def update_state(
self,
y_true: tf.Tensor,
y_pred: tf.Tensor,
sample_weight: Optional[tf.Tensor] = None) -> List[tf.Operation]:
"""Accumulates the panoptic quality statistics.
Args:
y_true: The ground truth panoptic label map (defined as semantic_map *
max_instances_per_category + instance_map).
y_pred: The predicted panoptic label map (defined as semantic_map *
max_instances_per_category + instance_map).
sample_weight: Optional weighting of each example. Defaults to 1. Can be a
`Tensor` whose rank is either 0, or the same rank as `y_true`, and must
be broadcastable to `y_true`.
Returns:
Update ops for iou, tp, fn, fp.
"""
result = self.compare_and_accumulate(y_true, y_pred)
iou, tp, fn, fp = tuple(result)
update_iou_op = self.total_iou.assign_add(iou)
update_tp_op = self.total_tp.assign_add(tp)
update_fn_op = self.total_fn.assign_add(fn)
update_fp_op = self.total_fp.assign_add(fp)
return [update_iou_op, update_tp_op, update_fn_op, update_fp_op]
def result(self) -> tf.Tensor:
"""Computes the panoptic quality."""
sq = tf.math.divide_no_nan(self.total_iou, self.total_tp)
rq = tf.math.divide_no_nan(
self.total_tp,
self.total_tp + 0.5 * self.total_fn + 0.5 * self.total_fp)
pq = tf.math.multiply(sq, rq)
# Find the valid classes that will be used for evaluation. We will
# ignore classes which have (tp + fn + fp) equal to 0.
# The "ignore" label will be included in this based on logic that skips
# counting those instances/regions.
valid_classes = tf.not_equal(self.total_tp + self.total_fn + self.total_fp,
0)
# Compute averages over classes.
qualities = tf.stack(
[pq, sq, rq, self.total_tp, self.total_fn, self.total_fp], axis=0)
summarized_qualities = tf.math.reduce_mean(
tf.boolean_mask(qualities, valid_classes, axis=1), axis=1)
return summarized_qualities
def reset_states(self) -> None:
"""See base class."""
tf.keras.backend.set_value(self.total_iou, np.zeros(self.num_classes))
tf.keras.backend.set_value(self.total_tp, np.zeros(self.num_classes))
tf.keras.backend.set_value(self.total_fn, np.zeros(self.num_classes))
tf.keras.backend.set_value(self.total_fp, np.zeros(self.num_classes))
def get_config(self) -> Mapping[str, Any]:
"""See base class."""
config = {
'num_classes': self.num_classes,
'ignored_label': self.ignored_label,
'max_instances_per_category': self.max_instances_per_category,
'offset': self.offset,
}
base_config = super(PanopticQuality, self).get_config()
return dict(list(base_config.items()) + list(config.items()))