Spaces:
Running
Running
add experimental tab
Browse files- app.py +4 -0
- app_experimental.py +162 -88
app.py
CHANGED
|
@@ -16,8 +16,11 @@ from app_together import demo as demo_together
|
|
| 16 |
from app_xai import demo as demo_grok
|
| 17 |
from app_flux import demo as demo_flux
|
| 18 |
from app_ltx_video import demo as demo_ltx_video
|
|
|
|
| 19 |
|
| 20 |
with gr.Blocks(fill_height=True) as demo:
|
|
|
|
|
|
|
| 21 |
with gr.Tab("Meta Llama"):
|
| 22 |
demo_sambanova.render()
|
| 23 |
gr.Markdown(
|
|
@@ -60,6 +63,7 @@ with gr.Blocks(fill_height=True) as demo:
|
|
| 60 |
demo_nvidia.render()
|
| 61 |
with gr.Tab("Flux"):
|
| 62 |
demo_flux.render()
|
|
|
|
| 63 |
|
| 64 |
|
| 65 |
if __name__ == "__main__":
|
|
|
|
| 16 |
from app_xai import demo as demo_grok
|
| 17 |
from app_flux import demo as demo_flux
|
| 18 |
from app_ltx_video import demo as demo_ltx_video
|
| 19 |
+
from app_experimental import demo as demo_experimental
|
| 20 |
|
| 21 |
with gr.Blocks(fill_height=True) as demo:
|
| 22 |
+
with gr.Tab("Experimental"):
|
| 23 |
+
demo_experimental.render()
|
| 24 |
with gr.Tab("Meta Llama"):
|
| 25 |
demo_sambanova.render()
|
| 26 |
gr.Markdown(
|
|
|
|
| 63 |
demo_nvidia.render()
|
| 64 |
with gr.Tab("Flux"):
|
| 65 |
demo_flux.render()
|
| 66 |
+
|
| 67 |
|
| 68 |
|
| 69 |
if __name__ == "__main__":
|
app_experimental.py
CHANGED
|
@@ -1,48 +1,31 @@
|
|
| 1 |
import os
|
| 2 |
import gradio as gr
|
| 3 |
-
from typing import List, Dict
|
| 4 |
import random
|
| 5 |
-
import
|
| 6 |
-
from
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
import anthropic_gradio
|
| 10 |
-
import cerebras_gradio
|
| 11 |
-
import dashscope_gradio
|
| 12 |
-
import fireworks_gradio
|
| 13 |
-
import gemini_gradio
|
| 14 |
-
import groq_gradio
|
| 15 |
-
import hyperbolic_gradio
|
| 16 |
-
import mistral_gradio
|
| 17 |
-
import nvidia_gradio
|
| 18 |
-
import openai_gradio
|
| 19 |
-
import perplexity_gradio
|
| 20 |
-
import sambanova_gradio
|
| 21 |
-
import together_gradio
|
| 22 |
-
import xai_gradio
|
| 23 |
-
|
| 24 |
-
# Define MODEL_REGISTRIES dictionary
|
| 25 |
-
MODEL_REGISTRIES = {
|
| 26 |
-
"OpenAI": (openai_gradio.registry, os.getenv("OPENAI_API_KEY")),
|
| 27 |
-
"Anthropic": (anthropic_gradio.registry, os.getenv("ANTHROPIC_API_KEY")),
|
| 28 |
-
"Cerebras": (cerebras_gradio, os.getenv("CEREBRAS_API_KEY")),
|
| 29 |
-
"DashScope": (dashscope_gradio, os.getenv("DASHSCOPE_API_KEY")),
|
| 30 |
-
"Fireworks": (fireworks_gradio, os.getenv("FIREWORKS_API_KEY")),
|
| 31 |
-
"Gemini": (gemini_gradio, os.getenv("GEMINI_API_KEY")),
|
| 32 |
-
"Groq": (groq_gradio, os.getenv("GROQ_API_KEY")),
|
| 33 |
-
"Hyperbolic": (hyperbolic_gradio, os.getenv("HYPERBOLIC_API_KEY")),
|
| 34 |
-
"Mistral": (mistral_gradio, os.getenv("MISTRAL_API_KEY")),
|
| 35 |
-
"NVIDIA": (nvidia_gradio, os.getenv("NVIDIA_API_KEY")),
|
| 36 |
-
"SambaNova": (sambanova_gradio, os.getenv("SAMBANOVA_API_KEY")),
|
| 37 |
-
"Together": (together_gradio, os.getenv("TOGETHER_API_KEY")),
|
| 38 |
-
"XAI": (xai_gradio, os.getenv("XAI_API_KEY")),
|
| 39 |
-
}
|
| 40 |
|
| 41 |
def get_all_models():
|
| 42 |
"""Get all available models from the registries."""
|
| 43 |
return [
|
| 44 |
-
"
|
| 45 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
]
|
| 47 |
|
| 48 |
def generate_discussion_prompt(original_question: str, previous_responses: List[str]) -> str:
|
|
@@ -85,17 +68,66 @@ def chat_with_openai(model: str, messages: List[Dict], api_key: str) -> str:
|
|
| 85 |
)
|
| 86 |
return response.choices[0].message.content
|
| 87 |
|
| 88 |
-
def chat_with_anthropic(
|
| 89 |
-
|
| 90 |
client = Anthropic(api_key=api_key)
|
| 91 |
-
# Convert messages to Anthropic format
|
| 92 |
-
prompt = "\n\n".join([f"{m['role']}: {m['content']}" for m in messages])
|
| 93 |
response = client.messages.create(
|
| 94 |
-
model=
|
| 95 |
-
messages=
|
|
|
|
| 96 |
)
|
| 97 |
return response.content[0].text
|
| 98 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 99 |
def multi_model_consensus(
|
| 100 |
question: str,
|
| 101 |
selected_models: List[str],
|
|
@@ -113,31 +145,34 @@ def multi_model_consensus(
|
|
| 113 |
initial_responses = []
|
| 114 |
for i, model in enumerate(selected_models):
|
| 115 |
provider, model_name = model.split(": ", 1)
|
| 116 |
-
registry_fn, api_key = MODEL_REGISTRIES[provider]
|
| 117 |
|
| 118 |
-
if not api_key:
|
| 119 |
-
continue
|
| 120 |
-
|
| 121 |
try:
|
| 122 |
-
# Load the model using the registry function
|
| 123 |
-
predictor = gr.load(
|
| 124 |
-
name=model_name,
|
| 125 |
-
src=registry_fn,
|
| 126 |
-
token=api_key
|
| 127 |
-
)
|
| 128 |
-
|
| 129 |
-
# Format the request based on the provider
|
| 130 |
if provider == "Anthropic":
|
| 131 |
-
|
|
|
|
| 132 |
messages=[{"role": "user", "content": question}],
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 136 |
)
|
| 137 |
-
else:
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
|
|
|
| 141 |
)
|
| 142 |
|
| 143 |
initial_responses.append(f"{model}: {response}")
|
|
@@ -154,38 +189,77 @@ def multi_model_consensus(
|
|
| 154 |
random.shuffle(selected_models) # Randomize order each round
|
| 155 |
for model in selected_models:
|
| 156 |
provider, model_name = model.split(": ", 1)
|
| 157 |
-
registry, api_key = MODEL_REGISTRIES[provider]
|
| 158 |
|
| 159 |
-
if not api_key:
|
| 160 |
-
continue
|
| 161 |
-
|
| 162 |
try:
|
| 163 |
discussion_prompt = generate_discussion_prompt(question, discussion_history)
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 169 |
round_responses.append(f"{model}: {response}")
|
| 170 |
discussion_history.append(f"Round {round_num + 1} - {model}:\n{response}")
|
| 171 |
chat_history.append((f"Round {round_num + 1} - {model}", response))
|
| 172 |
except Exception as e:
|
| 173 |
chat_history.append((f"Error from {model} in round {round_num + 1}", str(e)))
|
| 174 |
|
| 175 |
-
# Final consensus
|
| 176 |
progress(0.9, desc="Building final consensus...")
|
| 177 |
-
# Use the first model for final consensus instead of two models
|
| 178 |
model = selected_models[0]
|
| 179 |
provider, model_name = model.split(": ", 1)
|
| 180 |
-
registry, api_key = MODEL_REGISTRIES[provider]
|
| 181 |
|
| 182 |
try:
|
| 183 |
consensus_prompt = generate_consensus_prompt(question, discussion_history)
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 189 |
except Exception as e:
|
| 190 |
final_consensus = f"Error getting consensus from {model}: {str(e)}"
|
| 191 |
|
|
@@ -198,22 +272,22 @@ with gr.Blocks() as demo:
|
|
| 198 |
gr.Markdown("# Experimental Multi-Model Consensus Chat")
|
| 199 |
gr.Markdown("""Select multiple models to collaborate on answering your question.
|
| 200 |
The models will discuss with each other and attempt to reach a consensus.
|
| 201 |
-
Maximum
|
| 202 |
|
| 203 |
with gr.Row():
|
| 204 |
with gr.Column():
|
| 205 |
model_selector = gr.Dropdown(
|
| 206 |
choices=get_all_models(),
|
| 207 |
multiselect=True,
|
| 208 |
-
label="Select Models (max
|
| 209 |
-
info="Choose up to
|
| 210 |
-
value=["
|
| 211 |
-
max_choices=
|
| 212 |
)
|
| 213 |
rounds_slider = gr.Slider(
|
| 214 |
minimum=1,
|
| 215 |
-
maximum=
|
| 216 |
-
value=
|
| 217 |
step=1,
|
| 218 |
label="Discussion Rounds",
|
| 219 |
info="Number of rounds of discussion between models"
|
|
|
|
| 1 |
import os
|
| 2 |
import gradio as gr
|
| 3 |
+
from typing import List, Dict, Callable
|
| 4 |
import random
|
| 5 |
+
import google.generativeai as genai
|
| 6 |
+
from anthropic import Anthropic
|
| 7 |
+
import openai
|
| 8 |
+
from openai import OpenAI # Add explicit OpenAI import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
def get_all_models():
|
| 11 |
"""Get all available models from the registries."""
|
| 12 |
return [
|
| 13 |
+
"SambaNova: Meta-Llama-3.2-1B-Instruct",
|
| 14 |
+
"SambaNova: Meta-Llama-3.2-3B-Instruct",
|
| 15 |
+
"SambaNova: Llama-3.2-11B-Vision-Instruct",
|
| 16 |
+
"SambaNova: Llama-3.2-90B-Vision-Instruct",
|
| 17 |
+
"SambaNova: Meta-Llama-3.1-8B-Instruct",
|
| 18 |
+
"SambaNova: Meta-Llama-3.1-70B-Instruct",
|
| 19 |
+
"SambaNova: Meta-Llama-3.1-405B-Instruct",
|
| 20 |
+
"Hyperbolic: Qwen/Qwen2.5-Coder-32B-Instruct",
|
| 21 |
+
"Hyperbolic: meta-llama/Llama-3.2-3B-Instruct",
|
| 22 |
+
"Hyperbolic: meta-llama/Meta-Llama-3.1-8B-Instruct",
|
| 23 |
+
"Hyperbolic: meta-llama/Meta-Llama-3.1-70B-Instruct",
|
| 24 |
+
"Hyperbolic: meta-llama/Meta-Llama-3-70B-Instruct",
|
| 25 |
+
"Hyperbolic: NousResearch/Hermes-3-Llama-3.1-70B",
|
| 26 |
+
"Hyperbolic: Qwen/Qwen2.5-72B-Instruct",
|
| 27 |
+
"Hyperbolic: deepseek-ai/DeepSeek-V2.5",
|
| 28 |
+
"Hyperbolic: meta-llama/Meta-Llama-3.1-405B-Instruct",
|
| 29 |
]
|
| 30 |
|
| 31 |
def generate_discussion_prompt(original_question: str, previous_responses: List[str]) -> str:
|
|
|
|
| 68 |
)
|
| 69 |
return response.choices[0].message.content
|
| 70 |
|
| 71 |
+
def chat_with_anthropic(messages: List[Dict], api_key: str) -> str:
|
| 72 |
+
"""Chat with Anthropic's Claude model."""
|
| 73 |
client = Anthropic(api_key=api_key)
|
|
|
|
|
|
|
| 74 |
response = client.messages.create(
|
| 75 |
+
model="claude-3-sonnet-20240229",
|
| 76 |
+
messages=messages,
|
| 77 |
+
max_tokens=1024
|
| 78 |
)
|
| 79 |
return response.content[0].text
|
| 80 |
|
| 81 |
+
def chat_with_gemini(messages: List[Dict], api_key: str) -> str:
|
| 82 |
+
"""Chat with Gemini Pro model."""
|
| 83 |
+
genai.configure(api_key=api_key)
|
| 84 |
+
model = genai.GenerativeModel('gemini-pro')
|
| 85 |
+
|
| 86 |
+
# Convert messages to Gemini format
|
| 87 |
+
gemini_messages = []
|
| 88 |
+
for msg in messages:
|
| 89 |
+
role = "user" if msg["role"] == "user" else "model"
|
| 90 |
+
gemini_messages.append({"role": role, "parts": [msg["content"]]})
|
| 91 |
+
|
| 92 |
+
response = model.generate_content([m["parts"][0] for m in gemini_messages])
|
| 93 |
+
return response.text
|
| 94 |
+
|
| 95 |
+
def chat_with_sambanova(messages: List[Dict], api_key: str, model_name: str = "Llama-3.2-90B-Vision-Instruct") -> str:
|
| 96 |
+
"""Chat with SambaNova's models using their OpenAI-compatible API."""
|
| 97 |
+
client = openai.OpenAI(
|
| 98 |
+
api_key=api_key,
|
| 99 |
+
base_url="https://api.sambanova.ai/v1",
|
| 100 |
+
)
|
| 101 |
+
|
| 102 |
+
response = client.chat.completions.create(
|
| 103 |
+
model=model_name, # Use the specific model name passed in
|
| 104 |
+
messages=messages,
|
| 105 |
+
temperature=0.1,
|
| 106 |
+
top_p=0.1
|
| 107 |
+
)
|
| 108 |
+
return response.choices[0].message.content
|
| 109 |
+
|
| 110 |
+
def chat_with_hyperbolic(messages: List[Dict], api_key: str, model_name: str = "Qwen/Qwen2.5-Coder-32B-Instruct") -> str:
|
| 111 |
+
"""Chat with Hyperbolic's models using their OpenAI-compatible API."""
|
| 112 |
+
client = OpenAI(
|
| 113 |
+
api_key=api_key,
|
| 114 |
+
base_url="https://api.hyperbolic.xyz/v1"
|
| 115 |
+
)
|
| 116 |
+
|
| 117 |
+
# Add system message to the start of the messages list
|
| 118 |
+
full_messages = [
|
| 119 |
+
{"role": "system", "content": "You are a helpful assistant. Be descriptive and clear."},
|
| 120 |
+
*messages
|
| 121 |
+
]
|
| 122 |
+
|
| 123 |
+
response = client.chat.completions.create(
|
| 124 |
+
model=model_name, # Use the specific model name passed in
|
| 125 |
+
messages=full_messages,
|
| 126 |
+
temperature=0.7,
|
| 127 |
+
max_tokens=1024,
|
| 128 |
+
)
|
| 129 |
+
return response.choices[0].message.content
|
| 130 |
+
|
| 131 |
def multi_model_consensus(
|
| 132 |
question: str,
|
| 133 |
selected_models: List[str],
|
|
|
|
| 145 |
initial_responses = []
|
| 146 |
for i, model in enumerate(selected_models):
|
| 147 |
provider, model_name = model.split(": ", 1)
|
|
|
|
| 148 |
|
|
|
|
|
|
|
|
|
|
| 149 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 150 |
if provider == "Anthropic":
|
| 151 |
+
api_key = os.getenv("ANTHROPIC_API_KEY")
|
| 152 |
+
response = chat_with_anthropic(
|
| 153 |
messages=[{"role": "user", "content": question}],
|
| 154 |
+
api_key=api_key
|
| 155 |
+
)
|
| 156 |
+
elif provider == "SambaNova":
|
| 157 |
+
api_key = os.getenv("SAMBANOVA_API_KEY")
|
| 158 |
+
response = chat_with_sambanova(
|
| 159 |
+
messages=[
|
| 160 |
+
{"role": "system", "content": "You are a helpful assistant"},
|
| 161 |
+
{"role": "user", "content": question}
|
| 162 |
+
],
|
| 163 |
+
api_key=api_key
|
| 164 |
+
)
|
| 165 |
+
elif provider == "Hyperbolic": # Add Hyperbolic case
|
| 166 |
+
api_key = os.getenv("HYPERBOLIC_API_KEY")
|
| 167 |
+
response = chat_with_hyperbolic(
|
| 168 |
+
messages=[{"role": "user", "content": question}],
|
| 169 |
+
api_key=api_key
|
| 170 |
)
|
| 171 |
+
else: # Gemini
|
| 172 |
+
api_key = os.getenv("GEMINI_API_KEY")
|
| 173 |
+
response = chat_with_gemini(
|
| 174 |
+
messages=[{"role": "user", "content": question}],
|
| 175 |
+
api_key=api_key
|
| 176 |
)
|
| 177 |
|
| 178 |
initial_responses.append(f"{model}: {response}")
|
|
|
|
| 189 |
random.shuffle(selected_models) # Randomize order each round
|
| 190 |
for model in selected_models:
|
| 191 |
provider, model_name = model.split(": ", 1)
|
|
|
|
| 192 |
|
|
|
|
|
|
|
|
|
|
| 193 |
try:
|
| 194 |
discussion_prompt = generate_discussion_prompt(question, discussion_history)
|
| 195 |
+
if provider == "Anthropic":
|
| 196 |
+
api_key = os.getenv("ANTHROPIC_API_KEY")
|
| 197 |
+
response = chat_with_anthropic(
|
| 198 |
+
messages=[{"role": "user", "content": discussion_prompt}],
|
| 199 |
+
api_key=api_key
|
| 200 |
+
)
|
| 201 |
+
elif provider == "SambaNova":
|
| 202 |
+
api_key = os.getenv("SAMBANOVA_API_KEY")
|
| 203 |
+
response = chat_with_sambanova(
|
| 204 |
+
messages=[
|
| 205 |
+
{"role": "system", "content": "You are a helpful assistant"},
|
| 206 |
+
{"role": "user", "content": discussion_prompt}
|
| 207 |
+
],
|
| 208 |
+
api_key=api_key
|
| 209 |
+
)
|
| 210 |
+
elif provider == "Hyperbolic": # Add Hyperbolic case
|
| 211 |
+
api_key = os.getenv("HYPERBOLIC_API_KEY")
|
| 212 |
+
response = chat_with_hyperbolic(
|
| 213 |
+
messages=[{"role": "user", "content": discussion_prompt}],
|
| 214 |
+
api_key=api_key
|
| 215 |
+
)
|
| 216 |
+
else: # Gemini
|
| 217 |
+
api_key = os.getenv("GEMINI_API_KEY")
|
| 218 |
+
response = chat_with_gemini(
|
| 219 |
+
messages=[{"role": "user", "content": discussion_prompt}],
|
| 220 |
+
api_key=api_key
|
| 221 |
+
)
|
| 222 |
+
|
| 223 |
round_responses.append(f"{model}: {response}")
|
| 224 |
discussion_history.append(f"Round {round_num + 1} - {model}:\n{response}")
|
| 225 |
chat_history.append((f"Round {round_num + 1} - {model}", response))
|
| 226 |
except Exception as e:
|
| 227 |
chat_history.append((f"Error from {model} in round {round_num + 1}", str(e)))
|
| 228 |
|
| 229 |
+
# Final consensus
|
| 230 |
progress(0.9, desc="Building final consensus...")
|
|
|
|
| 231 |
model = selected_models[0]
|
| 232 |
provider, model_name = model.split(": ", 1)
|
|
|
|
| 233 |
|
| 234 |
try:
|
| 235 |
consensus_prompt = generate_consensus_prompt(question, discussion_history)
|
| 236 |
+
if provider == "Anthropic":
|
| 237 |
+
api_key = os.getenv("ANTHROPIC_API_KEY")
|
| 238 |
+
final_consensus = chat_with_anthropic(
|
| 239 |
+
messages=[{"role": "user", "content": consensus_prompt}],
|
| 240 |
+
api_key=api_key
|
| 241 |
+
)
|
| 242 |
+
elif provider == "SambaNova":
|
| 243 |
+
api_key = os.getenv("SAMBANOVA_API_KEY")
|
| 244 |
+
final_consensus = chat_with_sambanova(
|
| 245 |
+
messages=[
|
| 246 |
+
{"role": "system", "content": "You are a helpful assistant"},
|
| 247 |
+
{"role": "user", "content": consensus_prompt}
|
| 248 |
+
],
|
| 249 |
+
api_key=api_key
|
| 250 |
+
)
|
| 251 |
+
elif provider == "Hyperbolic": # Add Hyperbolic case
|
| 252 |
+
api_key = os.getenv("HYPERBOLIC_API_KEY")
|
| 253 |
+
final_consensus = chat_with_hyperbolic(
|
| 254 |
+
messages=[{"role": "user", "content": consensus_prompt}],
|
| 255 |
+
api_key=api_key
|
| 256 |
+
)
|
| 257 |
+
else: # Gemini
|
| 258 |
+
api_key = os.getenv("GEMINI_API_KEY")
|
| 259 |
+
final_consensus = chat_with_gemini(
|
| 260 |
+
messages=[{"role": "user", "content": consensus_prompt}],
|
| 261 |
+
api_key=api_key
|
| 262 |
+
)
|
| 263 |
except Exception as e:
|
| 264 |
final_consensus = f"Error getting consensus from {model}: {str(e)}"
|
| 265 |
|
|
|
|
| 272 |
gr.Markdown("# Experimental Multi-Model Consensus Chat")
|
| 273 |
gr.Markdown("""Select multiple models to collaborate on answering your question.
|
| 274 |
The models will discuss with each other and attempt to reach a consensus.
|
| 275 |
+
Maximum 3 models can be selected at once.""")
|
| 276 |
|
| 277 |
with gr.Row():
|
| 278 |
with gr.Column():
|
| 279 |
model_selector = gr.Dropdown(
|
| 280 |
choices=get_all_models(),
|
| 281 |
multiselect=True,
|
| 282 |
+
label="Select Models (max 3)",
|
| 283 |
+
info="Choose up to 3 models to participate in the discussion",
|
| 284 |
+
value=["SambaNova: Llama-3.2-90B-Vision-Instruct", "Hyperbolic: Qwen/Qwen2.5-Coder-32B-Instruct"],
|
| 285 |
+
max_choices=3
|
| 286 |
)
|
| 287 |
rounds_slider = gr.Slider(
|
| 288 |
minimum=1,
|
| 289 |
+
maximum=2,
|
| 290 |
+
value=1,
|
| 291 |
step=1,
|
| 292 |
label="Discussion Rounds",
|
| 293 |
info="Number of rounds of discussion between models"
|