Spaces:
Runtime error
Runtime error
import argparse | |
import json | |
import os | |
import subprocess | |
import tempfile | |
import zipfile | |
from pathlib import Path | |
import cog | |
import kaldiio | |
import numpy as np | |
import pyworld as pw | |
import resampy | |
import soundfile as sf | |
import torch | |
from model_decoder import Decoder_ac | |
from model_encoder import Encoder, Encoder_lf0 | |
from model_encoder import SpeakerEncoder as Encoder_spk | |
from spectrogram import logmelspectrogram | |
def extract_logmel(wav_path, mean, std, sr=16000): | |
# wav, fs = librosa.load(wav_path, sr=sr) | |
wav, fs = sf.read(wav_path) | |
if fs != sr: | |
wav = resampy.resample(wav, fs, sr, axis=0) | |
fs = sr | |
# wav, _ = librosa.effects.trim(wav, top_db=15) | |
# duration = len(wav)/fs | |
assert fs == 16000 | |
peak = np.abs(wav).max() | |
if peak > 1.0: | |
wav /= peak | |
mel = logmelspectrogram( | |
x=wav, | |
fs=fs, | |
n_mels=80, | |
n_fft=400, | |
n_shift=160, | |
win_length=400, | |
window="hann", | |
fmin=80, | |
fmax=7600, | |
) | |
mel = (mel - mean) / (std + 1e-8) | |
tlen = mel.shape[0] | |
frame_period = 160 / fs * 1000 | |
f0, timeaxis = pw.dio(wav.astype("float64"), fs, frame_period=frame_period) | |
f0 = pw.stonemask(wav.astype("float64"), f0, timeaxis, fs) | |
f0 = f0[:tlen].reshape(-1).astype("float32") | |
nonzeros_indices = np.nonzero(f0) | |
lf0 = f0.copy() | |
lf0[nonzeros_indices] = np.log( | |
f0[nonzeros_indices] | |
) # for f0(Hz), lf0 > 0 when f0 != 0 | |
mean, std = np.mean(lf0[nonzeros_indices]), np.std(lf0[nonzeros_indices]) | |
lf0[nonzeros_indices] = (lf0[nonzeros_indices] - mean) / (std + 1e-8) | |
return mel, lf0 | |
class Predictor(cog.Predictor): | |
def setup(self): | |
"""Load models""" | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
checkpoint_path = "VQMIVC-pretrained models/checkpoints/useCSMITrue_useCPMITrue_usePSMITrue_useAmpTrue/VQMIVC-model.ckpt-500.pt" | |
mel_stats = np.load("./mel_stats/stats.npy") | |
encoder = Encoder( | |
in_channels=80, channels=512, n_embeddings=512, z_dim=64, c_dim=256 | |
) | |
encoder_lf0 = Encoder_lf0() | |
encoder_spk = Encoder_spk() | |
decoder = Decoder_ac(dim_neck=64) | |
encoder.to(device) | |
encoder_lf0.to(device) | |
encoder_spk.to(device) | |
decoder.to(device) | |
checkpoint = torch.load( | |
checkpoint_path, map_location=lambda storage, loc: storage | |
) | |
encoder.load_state_dict(checkpoint["encoder"]) | |
encoder_spk.load_state_dict(checkpoint["encoder_spk"]) | |
decoder.load_state_dict(checkpoint["decoder"]) | |
encoder.eval() | |
encoder_spk.eval() | |
decoder.eval() | |
self.mean = mel_stats[0] | |
self.std = mel_stats[1] | |
self.encoder = encoder | |
self.encoder_spk = encoder_spk | |
self.encoder_lf0 = encoder_lf0 | |
self.decoder = decoder | |
self.device = device | |
def predict(self, input_source, input_reference): | |
"""Compute prediction""" | |
# inference | |
out_dir = Path(tempfile.mkdtemp()) | |
out_path = out_dir / Path( | |
os.path.basename(str(input_source)).split(".")[0] + "_converted_gen.wav" | |
) | |
src_wav_path = input_source | |
ref_wav_path = input_reference | |
feat_writer = kaldiio.WriteHelper( | |
"ark,scp:{o}.ark,{o}.scp".format(o=str(out_dir) + "/feats.1") | |
) | |
src_mel, src_lf0 = extract_logmel(src_wav_path, self.mean, self.std) | |
ref_mel, _ = extract_logmel(ref_wav_path, self.mean, self.std) | |
src_mel = torch.FloatTensor(src_mel.T).unsqueeze(0).to(self.device) | |
src_lf0 = torch.FloatTensor(src_lf0).unsqueeze(0).to(self.device) | |
ref_mel = torch.FloatTensor(ref_mel.T).unsqueeze(0).to(self.device) | |
out_filename = os.path.basename(src_wav_path).split(".")[0] | |
with torch.no_grad(): | |
z, _, _, _ = self.encoder.encode(src_mel) | |
lf0_embs = self.encoder_lf0(src_lf0) | |
spk_emb = self.encoder_spk(ref_mel) | |
output = self.decoder(z, lf0_embs, spk_emb) | |
feat_writer[out_filename + "_converted"] = output.squeeze(0).cpu().numpy() | |
feat_writer[out_filename + "_source"] = src_mel.squeeze(0).cpu().numpy().T | |
feat_writer[out_filename + "_reference"] = ( | |
ref_mel.squeeze(0).cpu().numpy().T | |
) | |
feat_writer.close() | |
print("synthesize waveform...") | |
cmd = [ | |
"parallel-wavegan-decode", | |
"--checkpoint", | |
"./vocoder/checkpoint-3000000steps.pkl", | |
"--feats-scp", | |
f"{str(out_dir)}/feats.1.scp", | |
"--outdir", | |
str(out_dir), | |
] | |
subprocess.call(cmd) | |
return out_path | |