akhaliq3
spaces demo
2b7bf83
raw
history blame
12.9 kB
# -*- coding: utf-8 -*-
# Copyright 2019 Tomoki Hayashi
# MIT License (https://opensource.org/licenses/MIT)
"""Utility functions."""
import fnmatch
import logging
import os
import sys
import tarfile
from distutils.version import LooseVersion
from filelock import FileLock
import h5py
import numpy as np
import torch
import yaml
PRETRAINED_MODEL_LIST = {
"ljspeech_parallel_wavegan.v1": "1PdZv37JhAQH6AwNh31QlqruqrvjTBq7U",
"ljspeech_parallel_wavegan.v1.long": "1A9TsrD9fHxFviJVFjCk5W6lkzWXwhftv",
"ljspeech_parallel_wavegan.v1.no_limit": "1CdWKSiKoFNPZyF1lo7Dsj6cPKmfLJe72",
"ljspeech_parallel_wavegan.v3": "1-oZpwpWZMMolDYsCqeL12dFkXSBD9VBq",
"ljspeech_melgan.v1": "1i7-FPf9LPsYLHM6yNPoJdw5Q9d28C-ip",
"ljspeech_melgan.v1.long": "1x1b_R7d2561nqweK3FPb2muTdcFIYTu6",
"ljspeech_melgan.v3": "1J5gJ_FUZhOAKiRFWiAK6FcO5Z6oYJbmQ",
"ljspeech_melgan.v3.long": "124JnaLcRe7TsuAGh3XIClS3C7Wom9AU2",
"ljspeech_full_band_melgan.v2": "1Kb7q5zBeQ30Wsnma0X23G08zvgDG5oen",
"ljspeech_multi_band_melgan.v2": "1b70pJefKI8DhGYz4SxbEHpxm92tj1_qC",
"ljspeech_hifigan.v1": "1i6-hR_ksEssCYNlNII86v3AoeA1JcuWD",
"ljspeech_style_melgan.v1": "10aJSZfmCAobQJgRGio6cNyw6Xlgmme9-",
"jsut_parallel_wavegan.v1": "1qok91A6wuubuz4be-P9R2zKhNmQXG0VQ",
"jsut_multi_band_melgan.v2": "1chTt-76q2p69WPpZ1t1tt8szcM96IKad",
"jsut_hifigan.v1": "1vdgqTu9YKyGMCn-G7H2fI6UBC_4_55XB",
"jsut_style_melgan.v1": "1VIkjSxYxAGUVEvJxNLaOaJ7Twe48SH-s",
"csmsc_parallel_wavegan.v1": "1QTOAokhD5dtRnqlMPTXTW91-CG7jf74e",
"csmsc_multi_band_melgan.v2": "1G6trTmt0Szq-jWv2QDhqglMdWqQxiXQT",
"csmsc_hifigan.v1": "1fVKGEUrdhGjIilc21Sf0jODulAq6D1qY",
"csmsc_style_melgan.v1": "1kGUC_b9oVSv24vZRi66AAbSNUKJmbSCX",
"arctic_slt_parallel_wavegan.v1": "1_MXePg40-7DTjD0CDVzyduwQuW_O9aA1",
"jnas_parallel_wavegan.v1": "1D2TgvO206ixdLI90IqG787V6ySoXLsV_",
"vctk_parallel_wavegan.v1": "1bqEFLgAroDcgUy5ZFP4g2O2MwcwWLEca",
"vctk_parallel_wavegan.v1.long": "1tO4-mFrZ3aVYotgg7M519oobYkD4O_0-",
"vctk_multi_band_melgan.v2": "10PRQpHMFPE7RjF-MHYqvupK9S0xwBlJ_",
"vctk_hifigan.v1": "1oVOC4Vf0DYLdDp4r7GChfgj7Xh5xd0ex",
"vctk_style_melgan.v1": "14ThSEgjvl_iuFMdEGuNp7d3DulJHS9Mk",
"libritts_parallel_wavegan.v1": "1zHQl8kUYEuZ_i1qEFU6g2MEu99k3sHmR",
"libritts_parallel_wavegan.v1.long": "1b9zyBYGCCaJu0TIus5GXoMF8M3YEbqOw",
"libritts_multi_band_melgan.v2": "1kIDSBjrQvAsRewHPiFwBZ3FDelTWMp64",
"libritts_hifigan.v1": "1_TVFIvVtMn-Z4NiQrtrS20uSJOvBsnu1",
"libritts_style_melgan.v1": "1yuQakiMP0ECdB55IoxEGCbXDnNkWCoBg",
"kss_parallel_wavegan.v1": "1mLtQAzZHLiGSWguKCGG0EZa4C_xUO5gX",
"hui_acg_hokuspokus_parallel_wavegan.v1": "1irKf3okMLau56WNeOnhr2ZfSVESyQCGS",
"ruslan_parallel_wavegan.v1": "1M3UM6HN6wrfSe5jdgXwBnAIl_lJzLzuI",
}
def find_files(root_dir, query="*.wav", include_root_dir=True):
"""Find files recursively.
Args:
root_dir (str): Root root_dir to find.
query (str): Query to find.
include_root_dir (bool): If False, root_dir name is not included.
Returns:
list: List of found filenames.
"""
files = []
for root, dirnames, filenames in os.walk(root_dir, followlinks=True):
for filename in fnmatch.filter(filenames, query):
files.append(os.path.join(root, filename))
if not include_root_dir:
files = [file_.replace(root_dir + "/", "") for file_ in files]
return files
def read_hdf5(hdf5_name, hdf5_path):
"""Read hdf5 dataset.
Args:
hdf5_name (str): Filename of hdf5 file.
hdf5_path (str): Dataset name in hdf5 file.
Return:
any: Dataset values.
"""
if not os.path.exists(hdf5_name):
logging.error(f"There is no such a hdf5 file ({hdf5_name}).")
sys.exit(1)
hdf5_file = h5py.File(hdf5_name, "r")
if hdf5_path not in hdf5_file:
logging.error(f"There is no such a data in hdf5 file. ({hdf5_path})")
sys.exit(1)
hdf5_data = hdf5_file[hdf5_path][()]
hdf5_file.close()
return hdf5_data
def write_hdf5(hdf5_name, hdf5_path, write_data, is_overwrite=True):
"""Write dataset to hdf5.
Args:
hdf5_name (str): Hdf5 dataset filename.
hdf5_path (str): Dataset path in hdf5.
write_data (ndarray): Data to write.
is_overwrite (bool): Whether to overwrite dataset.
"""
# convert to numpy array
write_data = np.array(write_data)
# check folder existence
folder_name, _ = os.path.split(hdf5_name)
if not os.path.exists(folder_name) and len(folder_name) != 0:
os.makedirs(folder_name)
# check hdf5 existence
if os.path.exists(hdf5_name):
# if already exists, open with r+ mode
hdf5_file = h5py.File(hdf5_name, "r+")
# check dataset existence
if hdf5_path in hdf5_file:
if is_overwrite:
logging.warning(
"Dataset in hdf5 file already exists. " "recreate dataset in hdf5."
)
hdf5_file.__delitem__(hdf5_path)
else:
logging.error(
"Dataset in hdf5 file already exists. "
"if you want to overwrite, please set is_overwrite = True."
)
hdf5_file.close()
sys.exit(1)
else:
# if not exists, open with w mode
hdf5_file = h5py.File(hdf5_name, "w")
# write data to hdf5
hdf5_file.create_dataset(hdf5_path, data=write_data)
hdf5_file.flush()
hdf5_file.close()
class HDF5ScpLoader(object):
"""Loader class for a fests.scp file of hdf5 file.
Examples:
key1 /some/path/a.h5:feats
key2 /some/path/b.h5:feats
key3 /some/path/c.h5:feats
key4 /some/path/d.h5:feats
...
>>> loader = HDF5ScpLoader("hdf5.scp")
>>> array = loader["key1"]
key1 /some/path/a.h5
key2 /some/path/b.h5
key3 /some/path/c.h5
key4 /some/path/d.h5
...
>>> loader = HDF5ScpLoader("hdf5.scp", "feats")
>>> array = loader["key1"]
key1 /some/path/a.h5:feats_1,feats_2
key2 /some/path/b.h5:feats_1,feats_2
key3 /some/path/c.h5:feats_1,feats_2
key4 /some/path/d.h5:feats_1,feats_2
...
>>> loader = HDF5ScpLoader("hdf5.scp")
# feats_1 and feats_2 will be concatenated
>>> array = loader["key1"]
"""
def __init__(self, feats_scp, default_hdf5_path="feats"):
"""Initialize HDF5 scp loader.
Args:
feats_scp (str): Kaldi-style feats.scp file with hdf5 format.
default_hdf5_path (str): Path in hdf5 file. If the scp contain the info, not used.
"""
self.default_hdf5_path = default_hdf5_path
with open(feats_scp) as f:
lines = [line.replace("\n", "") for line in f.readlines()]
self.data = {}
for line in lines:
key, value = line.split()
self.data[key] = value
def get_path(self, key):
"""Get hdf5 file path for a given key."""
return self.data[key]
def __getitem__(self, key):
"""Get ndarray for a given key."""
p = self.data[key]
if ":" in p:
if len(p.split(",")) == 1:
return read_hdf5(*p.split(":"))
else:
p1, p2 = p.split(":")
feats = [read_hdf5(p1, p) for p in p2.split(",")]
return np.concatenate(
[f if len(f.shape) != 1 else f.reshape(-1, 1) for f in feats], 1
)
else:
return read_hdf5(p, self.default_hdf5_path)
def __len__(self):
"""Return the length of the scp file."""
return len(self.data)
def __iter__(self):
"""Return the iterator of the scp file."""
return iter(self.data)
def keys(self):
"""Return the keys of the scp file."""
return self.data.keys()
def values(self):
"""Return the values of the scp file."""
for key in self.keys():
yield self[key]
class NpyScpLoader(object):
"""Loader class for a fests.scp file of npy file.
Examples:
key1 /some/path/a.npy
key2 /some/path/b.npy
key3 /some/path/c.npy
key4 /some/path/d.npy
...
>>> loader = NpyScpLoader("feats.scp")
>>> array = loader["key1"]
"""
def __init__(self, feats_scp):
"""Initialize npy scp loader.
Args:
feats_scp (str): Kaldi-style feats.scp file with npy format.
"""
with open(feats_scp) as f:
lines = [line.replace("\n", "") for line in f.readlines()]
self.data = {}
for line in lines:
key, value = line.split()
self.data[key] = value
def get_path(self, key):
"""Get npy file path for a given key."""
return self.data[key]
def __getitem__(self, key):
"""Get ndarray for a given key."""
return np.load(self.data[key])
def __len__(self):
"""Return the length of the scp file."""
return len(self.data)
def __iter__(self):
"""Return the iterator of the scp file."""
return iter(self.data)
def keys(self):
"""Return the keys of the scp file."""
return self.data.keys()
def values(self):
"""Return the values of the scp file."""
for key in self.keys():
yield self[key]
def load_model(checkpoint, config=None, stats=None):
"""Load trained model.
Args:
checkpoint (str): Checkpoint path.
config (dict): Configuration dict.
stats (str): Statistics file path.
Return:
torch.nn.Module: Model instance.
"""
# load config if not provided
if config is None:
dirname = os.path.dirname(checkpoint)
config = os.path.join(dirname, "config.yml")
with open(config) as f:
config = yaml.load(f, Loader=yaml.Loader)
# lazy load for circular error
import parallel_wavegan.models
# get model and load parameters
model_class = getattr(
parallel_wavegan.models,
config.get("generator_type", "ParallelWaveGANGenerator"),
)
# workaround for typo #295
generator_params = {
k.replace("upsample_kernal_sizes", "upsample_kernel_sizes"): v
for k, v in config["generator_params"].items()
}
model = model_class(**generator_params)
model.load_state_dict(
torch.load(checkpoint, map_location="cpu")["model"]["generator"]
)
# check stats existence
if stats is None:
dirname = os.path.dirname(checkpoint)
if config["format"] == "hdf5":
ext = "h5"
else:
ext = "npy"
if os.path.exists(os.path.join(dirname, f"stats.{ext}")):
stats = os.path.join(dirname, f"stats.{ext}")
# load stats
if stats is not None:
model.register_stats(stats)
# add pqmf if needed
if config["generator_params"]["out_channels"] > 1:
# lazy load for circular error
from parallel_wavegan.layers import PQMF
pqmf_params = {}
if LooseVersion(config.get("version", "0.1.0")) <= LooseVersion("0.4.2"):
# For compatibility, here we set default values in version <= 0.4.2
pqmf_params.update(taps=62, cutoff_ratio=0.15, beta=9.0)
model.pqmf = PQMF(
subbands=config["generator_params"]["out_channels"],
**config.get("pqmf_params", pqmf_params),
)
return model
def download_pretrained_model(tag, download_dir=None):
"""Download pretrained model form google drive.
Args:
tag (str): Pretrained model tag.
download_dir (str): Directory to save downloaded files.
Returns:
str: Path of downloaded model checkpoint.
"""
assert tag in PRETRAINED_MODEL_LIST, f"{tag} does not exists."
id_ = PRETRAINED_MODEL_LIST[tag]
if download_dir is None:
download_dir = os.path.expanduser("~/.cache/parallel_wavegan")
output_path = f"{download_dir}/{tag}.tar.gz"
os.makedirs(f"{download_dir}", exist_ok=True)
with FileLock(output_path + ".lock"):
if not os.path.exists(output_path):
# lazy load for compatibility
import gdown
gdown.download(
f"https://drive.google.com/uc?id={id_}", output_path, quiet=False
)
with tarfile.open(output_path, "r:*") as tar:
for member in tar.getmembers():
if member.isreg():
member.name = os.path.basename(member.name)
tar.extract(member, f"{download_dir}/{tag}")
checkpoint_path = find_files(f"{download_dir}/{tag}", "checkpoint*.pkl")
return checkpoint_path[0]