Spaces:
Runtime error
Runtime error
# -*- coding: utf-8 -*- | |
"""HiFi-GAN Modules. | |
This code is based on https://github.com/jik876/hifi-gan. | |
""" | |
import copy | |
import logging | |
import numpy as np | |
import torch | |
import torch.nn.functional as F | |
from parallel_wavegan.layers import HiFiGANResidualBlock as ResidualBlock | |
from parallel_wavegan.utils import read_hdf5 | |
class HiFiGANGenerator(torch.nn.Module): | |
"""HiFiGAN generator module.""" | |
def __init__( | |
self, | |
in_channels=80, | |
out_channels=1, | |
channels=512, | |
kernel_size=7, | |
upsample_scales=(8, 8, 2, 2), | |
upsample_kernel_sizes=(16, 16, 4, 4), | |
resblock_kernel_sizes=(3, 7, 11), | |
resblock_dilations=[(1, 3, 5), (1, 3, 5), (1, 3, 5)], | |
use_additional_convs=True, | |
bias=True, | |
nonlinear_activation="LeakyReLU", | |
nonlinear_activation_params={"negative_slope": 0.1}, | |
use_weight_norm=True, | |
): | |
"""Initialize HiFiGANGenerator module. | |
Args: | |
in_channels (int): Number of input channels. | |
out_channels (int): Number of output channels. | |
channels (int): Number of hidden representation channels. | |
kernel_size (int): Kernel size of initial and final conv layer. | |
upsample_scales (list): List of upsampling scales. | |
upsample_kernel_sizes (list): List of kernel sizes for upsampling layers. | |
resblock_kernel_sizes (list): List of kernel sizes for residual blocks. | |
resblock_dilations (list): List of dilation list for residual blocks. | |
use_additional_convs (bool): Whether to use additional conv layers in residual blocks. | |
bias (bool): Whether to add bias parameter in convolution layers. | |
nonlinear_activation (str): Activation function module name. | |
nonlinear_activation_params (dict): Hyperparameters for activation function. | |
use_weight_norm (bool): Whether to use weight norm. | |
If set to true, it will be applied to all of the conv layers. | |
""" | |
super().__init__() | |
# check hyperparameters are valid | |
assert kernel_size % 2 == 1, "Kernel size must be odd number." | |
assert len(upsample_scales) == len(upsample_kernel_sizes) | |
assert len(resblock_dilations) == len(resblock_kernel_sizes) | |
# define modules | |
self.num_upsamples = len(upsample_kernel_sizes) | |
self.num_blocks = len(resblock_kernel_sizes) | |
self.input_conv = torch.nn.Conv1d( | |
in_channels, | |
channels, | |
kernel_size, | |
1, | |
padding=(kernel_size - 1) // 2, | |
) | |
self.upsamples = torch.nn.ModuleList() | |
self.blocks = torch.nn.ModuleList() | |
for i in range(len(upsample_kernel_sizes)): | |
assert upsample_kernel_sizes[i] == 2 * upsample_scales[i] | |
self.upsamples += [ | |
torch.nn.Sequential( | |
getattr(torch.nn, nonlinear_activation)( | |
**nonlinear_activation_params | |
), | |
torch.nn.ConvTranspose1d( | |
channels // (2 ** i), | |
channels // (2 ** (i + 1)), | |
upsample_kernel_sizes[i], | |
upsample_scales[i], | |
padding=upsample_scales[i] // 2 + upsample_scales[i] % 2, | |
output_padding=upsample_scales[i] % 2, | |
), | |
) | |
] | |
for j in range(len(resblock_kernel_sizes)): | |
self.blocks += [ | |
ResidualBlock( | |
kernel_size=resblock_kernel_sizes[j], | |
channels=channels // (2 ** (i + 1)), | |
dilations=resblock_dilations[j], | |
bias=bias, | |
use_additional_convs=use_additional_convs, | |
nonlinear_activation=nonlinear_activation, | |
nonlinear_activation_params=nonlinear_activation_params, | |
) | |
] | |
self.output_conv = torch.nn.Sequential( | |
# NOTE(kan-bayashi): follow official implementation but why | |
# using different slope parameter here? (0.1 vs. 0.01) | |
torch.nn.LeakyReLU(), | |
torch.nn.Conv1d( | |
channels // (2 ** (i + 1)), | |
out_channels, | |
kernel_size, | |
1, | |
padding=(kernel_size - 1) // 2, | |
), | |
torch.nn.Tanh(), | |
) | |
# apply weight norm | |
if use_weight_norm: | |
self.apply_weight_norm() | |
# reset parameters | |
self.reset_parameters() | |
def forward(self, c): | |
"""Calculate forward propagation. | |
Args: | |
c (Tensor): Input tensor (B, in_channels, T). | |
Returns: | |
Tensor: Output tensor (B, out_channels, T). | |
""" | |
c = self.input_conv(c) | |
for i in range(self.num_upsamples): | |
c = self.upsamples[i](c) | |
cs = 0.0 # initialize | |
for j in range(self.num_blocks): | |
cs += self.blocks[i * self.num_blocks + j](c) | |
c = cs / self.num_blocks | |
c = self.output_conv(c) | |
return c | |
def reset_parameters(self): | |
"""Reset parameters. | |
This initialization follows the official implementation manner. | |
https://github.com/jik876/hifi-gan/blob/master/models.py | |
""" | |
def _reset_parameters(m): | |
if isinstance(m, (torch.nn.Conv1d, torch.nn.ConvTranspose1d)): | |
m.weight.data.normal_(0.0, 0.01) | |
logging.debug(f"Reset parameters in {m}.") | |
self.apply(_reset_parameters) | |
def remove_weight_norm(self): | |
"""Remove weight normalization module from all of the layers.""" | |
def _remove_weight_norm(m): | |
try: | |
logging.debug(f"Weight norm is removed from {m}.") | |
torch.nn.utils.remove_weight_norm(m) | |
except ValueError: # this module didn't have weight norm | |
return | |
self.apply(_remove_weight_norm) | |
def apply_weight_norm(self): | |
"""Apply weight normalization module from all of the layers.""" | |
def _apply_weight_norm(m): | |
if isinstance(m, torch.nn.Conv1d) or isinstance( | |
m, torch.nn.ConvTranspose1d | |
): | |
torch.nn.utils.weight_norm(m) | |
logging.debug(f"Weight norm is applied to {m}.") | |
self.apply(_apply_weight_norm) | |
def register_stats(self, stats): | |
"""Register stats for de-normalization as buffer. | |
Args: | |
stats (str): Path of statistics file (".npy" or ".h5"). | |
""" | |
assert stats.endswith(".h5") or stats.endswith(".npy") | |
if stats.endswith(".h5"): | |
mean = read_hdf5(stats, "mean").reshape(-1) | |
scale = read_hdf5(stats, "scale").reshape(-1) | |
else: | |
mean = np.load(stats)[0].reshape(-1) | |
scale = np.load(stats)[1].reshape(-1) | |
self.register_buffer("mean", torch.from_numpy(mean).float()) | |
self.register_buffer("scale", torch.from_numpy(scale).float()) | |
logging.info("Successfully registered stats as buffer.") | |
def inference(self, c, normalize_before=False): | |
"""Perform inference. | |
Args: | |
c (Union[Tensor, ndarray]): Input tensor (T, in_channels). | |
normalize_before (bool): Whether to perform normalization. | |
Returns: | |
Tensor: Output tensor (T ** prod(upsample_scales), out_channels). | |
""" | |
if not isinstance(c, torch.Tensor): | |
c = torch.tensor(c, dtype=torch.float).to(next(self.parameters()).device) | |
if normalize_before: | |
c = (c - self.mean) / self.scale | |
c = self.forward(c.transpose(1, 0).unsqueeze(0)) | |
return c.squeeze(0).transpose(1, 0) | |
class HiFiGANPeriodDiscriminator(torch.nn.Module): | |
"""HiFiGAN period discriminator module.""" | |
def __init__( | |
self, | |
in_channels=1, | |
out_channels=1, | |
period=3, | |
kernel_sizes=[5, 3], | |
channels=32, | |
downsample_scales=[3, 3, 3, 3, 1], | |
max_downsample_channels=1024, | |
bias=True, | |
nonlinear_activation="LeakyReLU", | |
nonlinear_activation_params={"negative_slope": 0.1}, | |
use_weight_norm=True, | |
use_spectral_norm=False, | |
): | |
"""Initialize HiFiGANPeriodDiscriminator module. | |
Args: | |
in_channels (int): Number of input channels. | |
out_channels (int): Number of output channels. | |
period (int): Period. | |
kernel_sizes (list): Kernel sizes of initial conv layers and the final conv layer. | |
channels (int): Number of initial channels. | |
downsample_scales (list): List of downsampling scales. | |
max_downsample_channels (int): Number of maximum downsampling channels. | |
use_additional_convs (bool): Whether to use additional conv layers in residual blocks. | |
bias (bool): Whether to add bias parameter in convolution layers. | |
nonlinear_activation (str): Activation function module name. | |
nonlinear_activation_params (dict): Hyperparameters for activation function. | |
use_weight_norm (bool): Whether to use weight norm. | |
If set to true, it will be applied to all of the conv layers. | |
use_spectral_norm (bool): Whether to use spectral norm. | |
If set to true, it will be applied to all of the conv layers. | |
""" | |
super().__init__() | |
assert len(kernel_sizes) == 2 | |
assert kernel_sizes[0] % 2 == 1, "Kernel size must be odd number." | |
assert kernel_sizes[1] % 2 == 1, "Kernel size must be odd number." | |
self.period = period | |
self.convs = torch.nn.ModuleList() | |
in_chs = in_channels | |
out_chs = channels | |
for downsample_scale in downsample_scales: | |
self.convs += [ | |
torch.nn.Sequential( | |
torch.nn.Conv2d( | |
in_chs, | |
out_chs, | |
(kernel_sizes[0], 1), | |
(downsample_scale, 1), | |
padding=((kernel_sizes[0] - 1) // 2, 0), | |
), | |
getattr(torch.nn, nonlinear_activation)( | |
**nonlinear_activation_params | |
), | |
) | |
] | |
in_chs = out_chs | |
# NOTE(kan-bayashi): Use downsample_scale + 1? | |
out_chs = min(out_chs * 4, max_downsample_channels) | |
self.output_conv = torch.nn.Conv2d( | |
out_chs, | |
out_channels, | |
(kernel_sizes[1] - 1, 1), | |
1, | |
padding=((kernel_sizes[1] - 1) // 2, 0), | |
) | |
if use_weight_norm and use_spectral_norm: | |
raise ValueError("Either use use_weight_norm or use_spectral_norm.") | |
# apply weight norm | |
if use_weight_norm: | |
self.apply_weight_norm() | |
# apply spectral norm | |
if use_spectral_norm: | |
self.apply_spectral_norm() | |
def forward(self, x): | |
"""Calculate forward propagation. | |
Args: | |
c (Tensor): Input tensor (B, in_channels, T). | |
Returns: | |
list: List of each layer's tensors. | |
""" | |
# transform 1d to 2d -> (B, C, T/P, P) | |
b, c, t = x.shape | |
if t % self.period != 0: | |
n_pad = self.period - (t % self.period) | |
x = F.pad(x, (0, n_pad), "reflect") | |
t += n_pad | |
x = x.view(b, c, t // self.period, self.period) | |
# forward conv | |
outs = [] | |
for layer in self.convs: | |
x = layer(x) | |
outs += [x] | |
x = self.output_conv(x) | |
x = torch.flatten(x, 1, -1) | |
outs += [x] | |
return outs | |
def apply_weight_norm(self): | |
"""Apply weight normalization module from all of the layers.""" | |
def _apply_weight_norm(m): | |
if isinstance(m, torch.nn.Conv2d): | |
torch.nn.utils.weight_norm(m) | |
logging.debug(f"Weight norm is applied to {m}.") | |
self.apply(_apply_weight_norm) | |
def apply_spectral_norm(self): | |
"""Apply spectral normalization module from all of the layers.""" | |
def _apply_spectral_norm(m): | |
if isinstance(m, torch.nn.Conv2d): | |
torch.nn.utils.spectral_norm(m) | |
logging.debug(f"Spectral norm is applied to {m}.") | |
self.apply(_apply_spectral_norm) | |
class HiFiGANMultiPeriodDiscriminator(torch.nn.Module): | |
"""HiFiGAN multi-period discriminator module.""" | |
def __init__( | |
self, | |
periods=[2, 3, 5, 7, 11], | |
discriminator_params={ | |
"in_channels": 1, | |
"out_channels": 1, | |
"kernel_sizes": [5, 3], | |
"channels": 32, | |
"downsample_scales": [3, 3, 3, 3, 1], | |
"max_downsample_channels": 1024, | |
"bias": True, | |
"nonlinear_activation": "LeakyReLU", | |
"nonlinear_activation_params": {"negative_slope": 0.1}, | |
"use_weight_norm": True, | |
"use_spectral_norm": False, | |
}, | |
): | |
"""Initialize HiFiGANMultiPeriodDiscriminator module. | |
Args: | |
periods (list): List of periods. | |
discriminator_params (dict): Parameters for hifi-gan period discriminator module. | |
The period parameter will be overwritten. | |
""" | |
super().__init__() | |
self.discriminators = torch.nn.ModuleList() | |
for period in periods: | |
params = copy.deepcopy(discriminator_params) | |
params["period"] = period | |
self.discriminators += [HiFiGANPeriodDiscriminator(**params)] | |
def forward(self, x): | |
"""Calculate forward propagation. | |
Args: | |
x (Tensor): Input noise signal (B, 1, T). | |
Returns: | |
List: List of list of each discriminator outputs, which consists of each layer output tensors. | |
""" | |
outs = [] | |
for f in self.discriminators: | |
outs += [f(x)] | |
return outs | |
class HiFiGANScaleDiscriminator(torch.nn.Module): | |
"""HiFi-GAN scale discriminator module.""" | |
def __init__( | |
self, | |
in_channels=1, | |
out_channels=1, | |
kernel_sizes=[15, 41, 5, 3], | |
channels=128, | |
max_downsample_channels=1024, | |
max_groups=16, | |
bias=True, | |
downsample_scales=[2, 2, 4, 4, 1], | |
nonlinear_activation="LeakyReLU", | |
nonlinear_activation_params={"negative_slope": 0.1}, | |
use_weight_norm=True, | |
use_spectral_norm=False, | |
): | |
"""Initilize HiFiGAN scale discriminator module. | |
Args: | |
in_channels (int): Number of input channels. | |
out_channels (int): Number of output channels. | |
kernel_sizes (list): List of four kernel sizes. The first will be used for the first conv layer, | |
and the second is for downsampling part, and the remaining two are for output layers. | |
channels (int): Initial number of channels for conv layer. | |
max_downsample_channels (int): Maximum number of channels for downsampling layers. | |
bias (bool): Whether to add bias parameter in convolution layers. | |
downsample_scales (list): List of downsampling scales. | |
nonlinear_activation (str): Activation function module name. | |
nonlinear_activation_params (dict): Hyperparameters for activation function. | |
use_weight_norm (bool): Whether to use weight norm. | |
If set to true, it will be applied to all of the conv layers. | |
use_spectral_norm (bool): Whether to use spectral norm. | |
If set to true, it will be applied to all of the conv layers. | |
""" | |
super().__init__() | |
self.layers = torch.nn.ModuleList() | |
# check kernel size is valid | |
assert len(kernel_sizes) == 4 | |
for ks in kernel_sizes: | |
assert ks % 2 == 1 | |
# add first layer | |
self.layers += [ | |
torch.nn.Sequential( | |
torch.nn.Conv1d( | |
in_channels, | |
channels, | |
# NOTE(kan-bayashi): Use always the same kernel size | |
kernel_sizes[0], | |
bias=bias, | |
padding=(kernel_sizes[0] - 1) // 2, | |
), | |
getattr(torch.nn, nonlinear_activation)(**nonlinear_activation_params), | |
) | |
] | |
# add downsample layers | |
in_chs = channels | |
out_chs = channels | |
# NOTE(kan-bayashi): Remove hard coding? | |
groups = 4 | |
for downsample_scale in downsample_scales: | |
self.layers += [ | |
torch.nn.Sequential( | |
torch.nn.Conv1d( | |
in_chs, | |
out_chs, | |
kernel_size=kernel_sizes[1], | |
stride=downsample_scale, | |
padding=(kernel_sizes[1] - 1) // 2, | |
groups=groups, | |
bias=bias, | |
), | |
getattr(torch.nn, nonlinear_activation)( | |
**nonlinear_activation_params | |
), | |
) | |
] | |
in_chs = out_chs | |
# NOTE(kan-bayashi): Remove hard coding? | |
out_chs = min(in_chs * 2, max_downsample_channels) | |
# NOTE(kan-bayashi): Remove hard coding? | |
groups = min(groups * 4, max_groups) | |
# add final layers | |
out_chs = min(in_chs * 2, max_downsample_channels) | |
self.layers += [ | |
torch.nn.Sequential( | |
torch.nn.Conv1d( | |
in_chs, | |
out_chs, | |
kernel_size=kernel_sizes[2], | |
stride=1, | |
padding=(kernel_sizes[2] - 1) // 2, | |
bias=bias, | |
), | |
getattr(torch.nn, nonlinear_activation)(**nonlinear_activation_params), | |
) | |
] | |
self.layers += [ | |
torch.nn.Conv1d( | |
out_chs, | |
out_channels, | |
kernel_size=kernel_sizes[3], | |
stride=1, | |
padding=(kernel_sizes[3] - 1) // 2, | |
bias=bias, | |
), | |
] | |
if use_weight_norm and use_spectral_norm: | |
raise ValueError("Either use use_weight_norm or use_spectral_norm.") | |
# apply weight norm | |
if use_weight_norm: | |
self.apply_weight_norm() | |
# apply spectral norm | |
if use_spectral_norm: | |
self.apply_spectral_norm() | |
def forward(self, x): | |
"""Calculate forward propagation. | |
Args: | |
x (Tensor): Input noise signal (B, 1, T). | |
Returns: | |
List: List of output tensors of each layer. | |
""" | |
outs = [] | |
for f in self.layers: | |
x = f(x) | |
outs += [x] | |
return outs | |
def apply_weight_norm(self): | |
"""Apply weight normalization module from all of the layers.""" | |
def _apply_weight_norm(m): | |
if isinstance(m, torch.nn.Conv2d): | |
torch.nn.utils.weight_norm(m) | |
logging.debug(f"Weight norm is applied to {m}.") | |
self.apply(_apply_weight_norm) | |
def apply_spectral_norm(self): | |
"""Apply spectral normalization module from all of the layers.""" | |
def _apply_spectral_norm(m): | |
if isinstance(m, torch.nn.Conv2d): | |
torch.nn.utils.spectral_norm(m) | |
logging.debug(f"Spectral norm is applied to {m}.") | |
self.apply(_apply_spectral_norm) | |
class HiFiGANMultiScaleDiscriminator(torch.nn.Module): | |
"""HiFi-GAN multi-scale discriminator module.""" | |
def __init__( | |
self, | |
scales=3, | |
downsample_pooling="AvgPool1d", | |
# follow the official implementation setting | |
downsample_pooling_params={ | |
"kernel_size": 4, | |
"stride": 2, | |
"padding": 2, | |
}, | |
discriminator_params={ | |
"in_channels": 1, | |
"out_channels": 1, | |
"kernel_sizes": [15, 41, 5, 3], | |
"channels": 128, | |
"max_downsample_channels": 1024, | |
"max_groups": 16, | |
"bias": True, | |
"downsample_scales": [2, 2, 4, 4, 1], | |
"nonlinear_activation": "LeakyReLU", | |
"nonlinear_activation_params": {"negative_slope": 0.1}, | |
}, | |
follow_official_norm=False, | |
): | |
"""Initilize HiFiGAN multi-scale discriminator module. | |
Args: | |
scales (int): Number of multi-scales. | |
downsample_pooling (str): Pooling module name for downsampling of the inputs. | |
downsample_pooling_params (dict): Parameters for the above pooling module. | |
discriminator_params (dict): Parameters for hifi-gan scale discriminator module. | |
follow_official_norm (bool): Whether to follow the norm setting of the official | |
implementaion. The first discriminator uses spectral norm and the other | |
discriminators use weight norm. | |
""" | |
super().__init__() | |
self.discriminators = torch.nn.ModuleList() | |
# add discriminators | |
for i in range(scales): | |
params = copy.deepcopy(discriminator_params) | |
if follow_official_norm: | |
if i == 0: | |
params["use_weight_norm"] = False | |
params["use_spectral_norm"] = True | |
else: | |
params["use_weight_norm"] = True | |
params["use_spectral_norm"] = False | |
self.discriminators += [HiFiGANScaleDiscriminator(**params)] | |
self.pooling = getattr(torch.nn, downsample_pooling)( | |
**downsample_pooling_params | |
) | |
def forward(self, x): | |
"""Calculate forward propagation. | |
Args: | |
x (Tensor): Input noise signal (B, 1, T). | |
Returns: | |
List: List of list of each discriminator outputs, which consists of each layer output tensors. | |
""" | |
outs = [] | |
for f in self.discriminators: | |
outs += [f(x)] | |
x = self.pooling(x) | |
return outs | |
class HiFiGANMultiScaleMultiPeriodDiscriminator(torch.nn.Module): | |
"""HiFi-GAN multi-scale + multi-period discriminator module.""" | |
def __init__( | |
self, | |
# Multi-scale discriminator related | |
scales=3, | |
scale_downsample_pooling="AvgPool1d", | |
scale_downsample_pooling_params={ | |
"kernel_size": 4, | |
"stride": 2, | |
"padding": 2, | |
}, | |
scale_discriminator_params={ | |
"in_channels": 1, | |
"out_channels": 1, | |
"kernel_sizes": [15, 41, 5, 3], | |
"channels": 128, | |
"max_downsample_channels": 1024, | |
"max_groups": 16, | |
"bias": True, | |
"downsample_scales": [2, 2, 4, 4, 1], | |
"nonlinear_activation": "LeakyReLU", | |
"nonlinear_activation_params": {"negative_slope": 0.1}, | |
}, | |
follow_official_norm=True, | |
# Multi-period discriminator related | |
periods=[2, 3, 5, 7, 11], | |
period_discriminator_params={ | |
"in_channels": 1, | |
"out_channels": 1, | |
"kernel_sizes": [5, 3], | |
"channels": 32, | |
"downsample_scales": [3, 3, 3, 3, 1], | |
"max_downsample_channels": 1024, | |
"bias": True, | |
"nonlinear_activation": "LeakyReLU", | |
"nonlinear_activation_params": {"negative_slope": 0.1}, | |
"use_weight_norm": True, | |
"use_spectral_norm": False, | |
}, | |
): | |
"""Initilize HiFiGAN multi-scale + multi-period discriminator module. | |
Args: | |
scales (int): Number of multi-scales. | |
scale_downsample_pooling (str): Pooling module name for downsampling of the inputs. | |
scale_downsample_pooling_params (dict): Parameters for the above pooling module. | |
scale_discriminator_params (dict): Parameters for hifi-gan scale discriminator module. | |
follow_official_norm (bool): Whether to follow the norm setting of the official | |
implementaion. The first discriminator uses spectral norm and the other | |
discriminators use weight norm. | |
periods (list): List of periods. | |
period_discriminator_params (dict): Parameters for hifi-gan period discriminator module. | |
The period parameter will be overwritten. | |
""" | |
super().__init__() | |
self.msd = HiFiGANMultiScaleDiscriminator( | |
scales=scales, | |
downsample_pooling=scale_downsample_pooling, | |
downsample_pooling_params=scale_downsample_pooling_params, | |
discriminator_params=scale_discriminator_params, | |
follow_official_norm=follow_official_norm, | |
) | |
self.mpd = HiFiGANMultiPeriodDiscriminator( | |
periods=periods, | |
discriminator_params=period_discriminator_params, | |
) | |
def forward(self, x): | |
"""Calculate forward propagation. | |
Args: | |
x (Tensor): Input noise signal (B, 1, T). | |
Returns: | |
List: List of list of each discriminator outputs, | |
which consists of each layer output tensors. | |
Multi scale and multi period ones are concatenated. | |
""" | |
msd_outs = self.msd(x) | |
mpd_outs = self.mpd(x) | |
return msd_outs + mpd_outs | |