Spaces:
Runtime error
Runtime error
# Copyright 2021 Tomoki Hayashi | |
# MIT License (https://opensource.org/licenses/MIT) | |
"""StyleMelGAN's TADEResBlock Modules.""" | |
from functools import partial | |
import torch | |
class TADELayer(torch.nn.Module): | |
"""TADE Layer module.""" | |
def __init__( | |
self, | |
in_channels=64, | |
aux_channels=80, | |
kernel_size=9, | |
bias=True, | |
upsample_factor=2, | |
upsample_mode="nearest", | |
): | |
"""Initilize TADE layer.""" | |
super().__init__() | |
self.norm = torch.nn.InstanceNorm1d(in_channels) | |
self.aux_conv = torch.nn.Sequential( | |
torch.nn.Conv1d( | |
aux_channels, | |
in_channels, | |
kernel_size, | |
1, | |
bias=bias, | |
padding=(kernel_size - 1) // 2, | |
), | |
# NOTE(kan-bayashi): Use non-linear activation? | |
) | |
self.gated_conv = torch.nn.Sequential( | |
torch.nn.Conv1d( | |
in_channels, | |
in_channels * 2, | |
kernel_size, | |
1, | |
bias=bias, | |
padding=(kernel_size - 1) // 2, | |
), | |
# NOTE(kan-bayashi): Use non-linear activation? | |
) | |
self.upsample = torch.nn.Upsample( | |
scale_factor=upsample_factor, mode=upsample_mode | |
) | |
def forward(self, x, c): | |
"""Calculate forward propagation. | |
Args: | |
x (Tensor): Input tensor (B, in_channels, T). | |
c (Tensor): Auxiliary input tensor (B, aux_channels, T'). | |
Returns: | |
Tensor: Output tensor (B, in_channels, T * in_upsample_factor). | |
Tensor: Upsampled aux tensor (B, in_channels, T * aux_upsample_factor). | |
""" | |
x = self.norm(x) | |
c = self.upsample(c) | |
c = self.aux_conv(c) | |
cg = self.gated_conv(c) | |
cg1, cg2 = cg.split(cg.size(1) // 2, dim=1) | |
# NOTE(kan-bayashi): Use upsample for noise input here? | |
y = cg1 * self.upsample(x) + cg2 | |
# NOTE(kan-bayashi): Return upsampled aux here? | |
return y, c | |
class TADEResBlock(torch.nn.Module): | |
"""TADEResBlock module.""" | |
def __init__( | |
self, | |
in_channels=64, | |
aux_channels=80, | |
kernel_size=9, | |
dilation=2, | |
bias=True, | |
upsample_factor=2, | |
upsample_mode="nearest", | |
gated_function="softmax", | |
): | |
"""Initialize TADEResBlock module.""" | |
super().__init__() | |
self.tade1 = TADELayer( | |
in_channels=in_channels, | |
aux_channels=aux_channels, | |
kernel_size=kernel_size, | |
bias=bias, | |
# NOTE(kan-bayashi): Use upsample in the first TADE layer? | |
upsample_factor=1, | |
upsample_mode=upsample_mode, | |
) | |
self.gated_conv1 = torch.nn.Conv1d( | |
in_channels, | |
in_channels * 2, | |
kernel_size, | |
1, | |
bias=bias, | |
padding=(kernel_size - 1) // 2, | |
) | |
self.tade2 = TADELayer( | |
in_channels=in_channels, | |
aux_channels=in_channels, | |
kernel_size=kernel_size, | |
bias=bias, | |
upsample_factor=upsample_factor, | |
upsample_mode=upsample_mode, | |
) | |
self.gated_conv2 = torch.nn.Conv1d( | |
in_channels, | |
in_channels * 2, | |
kernel_size, | |
1, | |
bias=bias, | |
dilation=dilation, | |
padding=(kernel_size - 1) // 2 * dilation, | |
) | |
self.upsample = torch.nn.Upsample( | |
scale_factor=upsample_factor, mode=upsample_mode | |
) | |
if gated_function == "softmax": | |
self.gated_function = partial(torch.softmax, dim=1) | |
elif gated_function == "sigmoid": | |
self.gated_function = torch.sigmoid | |
else: | |
raise ValueError(f"{gated_function} is not supported.") | |
def forward(self, x, c): | |
"""Calculate forward propagation. | |
Args: | |
x (Tensor): Input tensor (B, in_channels, T). | |
c (Tensor): Auxiliary input tensor (B, aux_channels, T'). | |
Returns: | |
Tensor: Output tensor (B, in_channels, T * in_upsample_factor). | |
Tensor: Upsampled auxirialy tensor (B, in_channels, T * in_upsample_factor). | |
""" | |
residual = x | |
x, c = self.tade1(x, c) | |
x = self.gated_conv1(x) | |
xa, xb = x.split(x.size(1) // 2, dim=1) | |
x = self.gated_function(xa) * torch.tanh(xb) | |
x, c = self.tade2(x, c) | |
x = self.gated_conv2(x) | |
xa, xb = x.split(x.size(1) // 2, dim=1) | |
x = self.gated_function(xa) * torch.tanh(xb) | |
# NOTE(kan-bayashi): Return upsampled aux here? | |
return self.upsample(residual) + x, c | |