akhaliq3
spaces demo
2b7bf83
raw
history blame
4.81 kB
# Copyright 2021 Tomoki Hayashi
# MIT License (https://opensource.org/licenses/MIT)
"""StyleMelGAN's TADEResBlock Modules."""
from functools import partial
import torch
class TADELayer(torch.nn.Module):
"""TADE Layer module."""
def __init__(
self,
in_channels=64,
aux_channels=80,
kernel_size=9,
bias=True,
upsample_factor=2,
upsample_mode="nearest",
):
"""Initilize TADE layer."""
super().__init__()
self.norm = torch.nn.InstanceNorm1d(in_channels)
self.aux_conv = torch.nn.Sequential(
torch.nn.Conv1d(
aux_channels,
in_channels,
kernel_size,
1,
bias=bias,
padding=(kernel_size - 1) // 2,
),
# NOTE(kan-bayashi): Use non-linear activation?
)
self.gated_conv = torch.nn.Sequential(
torch.nn.Conv1d(
in_channels,
in_channels * 2,
kernel_size,
1,
bias=bias,
padding=(kernel_size - 1) // 2,
),
# NOTE(kan-bayashi): Use non-linear activation?
)
self.upsample = torch.nn.Upsample(
scale_factor=upsample_factor, mode=upsample_mode
)
def forward(self, x, c):
"""Calculate forward propagation.
Args:
x (Tensor): Input tensor (B, in_channels, T).
c (Tensor): Auxiliary input tensor (B, aux_channels, T').
Returns:
Tensor: Output tensor (B, in_channels, T * in_upsample_factor).
Tensor: Upsampled aux tensor (B, in_channels, T * aux_upsample_factor).
"""
x = self.norm(x)
c = self.upsample(c)
c = self.aux_conv(c)
cg = self.gated_conv(c)
cg1, cg2 = cg.split(cg.size(1) // 2, dim=1)
# NOTE(kan-bayashi): Use upsample for noise input here?
y = cg1 * self.upsample(x) + cg2
# NOTE(kan-bayashi): Return upsampled aux here?
return y, c
class TADEResBlock(torch.nn.Module):
"""TADEResBlock module."""
def __init__(
self,
in_channels=64,
aux_channels=80,
kernel_size=9,
dilation=2,
bias=True,
upsample_factor=2,
upsample_mode="nearest",
gated_function="softmax",
):
"""Initialize TADEResBlock module."""
super().__init__()
self.tade1 = TADELayer(
in_channels=in_channels,
aux_channels=aux_channels,
kernel_size=kernel_size,
bias=bias,
# NOTE(kan-bayashi): Use upsample in the first TADE layer?
upsample_factor=1,
upsample_mode=upsample_mode,
)
self.gated_conv1 = torch.nn.Conv1d(
in_channels,
in_channels * 2,
kernel_size,
1,
bias=bias,
padding=(kernel_size - 1) // 2,
)
self.tade2 = TADELayer(
in_channels=in_channels,
aux_channels=in_channels,
kernel_size=kernel_size,
bias=bias,
upsample_factor=upsample_factor,
upsample_mode=upsample_mode,
)
self.gated_conv2 = torch.nn.Conv1d(
in_channels,
in_channels * 2,
kernel_size,
1,
bias=bias,
dilation=dilation,
padding=(kernel_size - 1) // 2 * dilation,
)
self.upsample = torch.nn.Upsample(
scale_factor=upsample_factor, mode=upsample_mode
)
if gated_function == "softmax":
self.gated_function = partial(torch.softmax, dim=1)
elif gated_function == "sigmoid":
self.gated_function = torch.sigmoid
else:
raise ValueError(f"{gated_function} is not supported.")
def forward(self, x, c):
"""Calculate forward propagation.
Args:
x (Tensor): Input tensor (B, in_channels, T).
c (Tensor): Auxiliary input tensor (B, aux_channels, T').
Returns:
Tensor: Output tensor (B, in_channels, T * in_upsample_factor).
Tensor: Upsampled auxirialy tensor (B, in_channels, T * in_upsample_factor).
"""
residual = x
x, c = self.tade1(x, c)
x = self.gated_conv1(x)
xa, xb = x.split(x.size(1) // 2, dim=1)
x = self.gated_function(xa) * torch.tanh(xb)
x, c = self.tade2(x, c)
x = self.gated_conv2(x)
xa, xb = x.split(x.size(1) // 2, dim=1)
x = self.gated_function(xa) * torch.tanh(xb)
# NOTE(kan-bayashi): Return upsampled aux here?
return self.upsample(residual) + x, c