Spaces:
Runtime error
Runtime error
#!/usr/bin/env python3 | |
# -*- coding: utf-8 -*- | |
# Copyright 2019 Tomoki Hayashi | |
# MIT License (https://opensource.org/licenses/MIT) | |
"""Calculate statistics of feature files.""" | |
import argparse | |
import logging | |
import os | |
import numpy as np | |
import yaml | |
from sklearn.preprocessing import StandardScaler | |
from tqdm import tqdm | |
from parallel_wavegan.datasets import MelDataset | |
from parallel_wavegan.datasets import MelSCPDataset | |
from parallel_wavegan.utils import read_hdf5 | |
from parallel_wavegan.utils import write_hdf5 | |
def main(): | |
"""Run preprocessing process.""" | |
parser = argparse.ArgumentParser( | |
description="Compute mean and variance of dumped raw features " | |
"(See detail in parallel_wavegan/bin/compute_statistics.py)." | |
) | |
parser.add_argument( | |
"--feats-scp", | |
"--scp", | |
default=None, | |
type=str, | |
help="kaldi-style feats.scp file. " | |
"you need to specify either feats-scp or rootdir.", | |
) | |
parser.add_argument( | |
"--rootdir", | |
type=str, | |
help="directory including feature files. " | |
"you need to specify either feats-scp or rootdir.", | |
) | |
parser.add_argument( | |
"--config", | |
type=str, | |
required=True, | |
help="yaml format configuration file.", | |
) | |
parser.add_argument( | |
"--dumpdir", | |
default=None, | |
type=str, | |
required=True, | |
help="directory to save statistics. if not provided, " | |
"stats will be saved in the above root directory. (default=None)", | |
) | |
parser.add_argument( | |
"--verbose", | |
type=int, | |
default=1, | |
help="logging level. higher is more logging. (default=1)", | |
) | |
args = parser.parse_args() | |
# set logger | |
if args.verbose > 1: | |
logging.basicConfig( | |
level=logging.DEBUG, | |
format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s", | |
) | |
elif args.verbose > 0: | |
logging.basicConfig( | |
level=logging.INFO, | |
format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s", | |
) | |
else: | |
logging.basicConfig( | |
level=logging.WARN, | |
format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s", | |
) | |
logging.warning("Skip DEBUG/INFO messages") | |
# load config | |
with open(args.config) as f: | |
config = yaml.load(f, Loader=yaml.Loader) | |
config.update(vars(args)) | |
# check arguments | |
if (args.feats_scp is not None and args.rootdir is not None) or ( | |
args.feats_scp is None and args.rootdir is None | |
): | |
raise ValueError("Please specify either --rootdir or --feats-scp.") | |
# check directory existence | |
if not os.path.exists(args.dumpdir): | |
os.makedirs(args.dumpdir) | |
# get dataset | |
if args.feats_scp is None: | |
if config["format"] == "hdf5": | |
mel_query = "*.h5" | |
mel_load_fn = lambda x: read_hdf5(x, "feats") # NOQA | |
elif config["format"] == "npy": | |
mel_query = "*-feats.npy" | |
mel_load_fn = np.load | |
else: | |
raise ValueError("support only hdf5 or npy format.") | |
dataset = MelDataset(args.rootdir, mel_query=mel_query, mel_load_fn=mel_load_fn) | |
else: | |
dataset = MelSCPDataset(args.feats_scp) | |
logging.info(f"The number of files = {len(dataset)}.") | |
# calculate statistics | |
scaler = StandardScaler() | |
for mel in tqdm(dataset): | |
scaler.partial_fit(mel) | |
if config["format"] == "hdf5": | |
write_hdf5( | |
os.path.join(args.dumpdir, "stats.h5"), | |
"mean", | |
scaler.mean_.astype(np.float32), | |
) | |
write_hdf5( | |
os.path.join(args.dumpdir, "stats.h5"), | |
"scale", | |
scaler.scale_.astype(np.float32), | |
) | |
else: | |
stats = np.stack([scaler.mean_, scaler.scale_], axis=0) | |
np.save( | |
os.path.join(args.dumpdir, "stats.npy"), | |
stats.astype(np.float32), | |
allow_pickle=False, | |
) | |
if __name__ == "__main__": | |
main() | |