Spaces:
Runtime error
Runtime error
Upload app.py with huggingface_hub
Browse files
app.py
ADDED
|
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
import spaces
|
| 4 |
+
from diffusers import FluxPipeline
|
| 5 |
+
from safetensors.torch import load_file
|
| 6 |
+
|
| 7 |
+
# Load the model
|
| 8 |
+
pipe = FluxPipeline.from_pretrained(
|
| 9 |
+
'black-forest-labs/FLUX.1-dev',
|
| 10 |
+
torch_dtype=torch.bfloat16,
|
| 11 |
+
use_safetensors=True
|
| 12 |
+
)
|
| 13 |
+
pipe.to('cuda')
|
| 14 |
+
|
| 15 |
+
# Load SRPO weights
|
| 16 |
+
state_dict = load_file("diffusion_pytorch_model.safetensors")
|
| 17 |
+
pipe.transformer.load_state_dict(state_dict, strict=False)
|
| 18 |
+
|
| 19 |
+
@spaces.GPU(duration=120)
|
| 20 |
+
def generate_image(
|
| 21 |
+
prompt,
|
| 22 |
+
negative_prompt="",
|
| 23 |
+
width=1024,
|
| 24 |
+
height=1024,
|
| 25 |
+
guidance_scale=3.5,
|
| 26 |
+
num_inference_steps=50,
|
| 27 |
+
seed=-1
|
| 28 |
+
):
|
| 29 |
+
if seed == -1:
|
| 30 |
+
seed = torch.randint(0, 2**32, (1,)).item()
|
| 31 |
+
|
| 32 |
+
generator = torch.Generator(device='cuda').manual_seed(seed)
|
| 33 |
+
|
| 34 |
+
image = pipe(
|
| 35 |
+
prompt=prompt,
|
| 36 |
+
negative_prompt=negative_prompt if negative_prompt else None,
|
| 37 |
+
guidance_scale=guidance_scale,
|
| 38 |
+
height=height,
|
| 39 |
+
width=width,
|
| 40 |
+
num_inference_steps=num_inference_steps,
|
| 41 |
+
max_sequence_length=512,
|
| 42 |
+
generator=generator
|
| 43 |
+
).images[0]
|
| 44 |
+
|
| 45 |
+
return image, seed
|
| 46 |
+
|
| 47 |
+
with gr.Blocks(title="FLUX SRPO Text-to-Image") as demo:
|
| 48 |
+
gr.Markdown("# FLUX with SRPO (Self-Regulating Preference Optimization)")
|
| 49 |
+
gr.Markdown("Generate high-quality images using FLUX model enhanced with Tencent's SRPO technique")
|
| 50 |
+
|
| 51 |
+
with gr.Row():
|
| 52 |
+
with gr.Column(scale=3):
|
| 53 |
+
prompt = gr.Textbox(
|
| 54 |
+
label="Prompt",
|
| 55 |
+
placeholder="Describe the image you want to generate...",
|
| 56 |
+
lines=3
|
| 57 |
+
)
|
| 58 |
+
negative_prompt = gr.Textbox(
|
| 59 |
+
label="Negative Prompt (optional)",
|
| 60 |
+
placeholder="What you don't want to see in the image...",
|
| 61 |
+
lines=2
|
| 62 |
+
)
|
| 63 |
+
|
| 64 |
+
with gr.Row():
|
| 65 |
+
width = gr.Slider(
|
| 66 |
+
minimum=256,
|
| 67 |
+
maximum=2048,
|
| 68 |
+
value=1024,
|
| 69 |
+
step=64,
|
| 70 |
+
label="Width"
|
| 71 |
+
)
|
| 72 |
+
height = gr.Slider(
|
| 73 |
+
minimum=256,
|
| 74 |
+
maximum=2048,
|
| 75 |
+
value=1024,
|
| 76 |
+
step=64,
|
| 77 |
+
label="Height"
|
| 78 |
+
)
|
| 79 |
+
|
| 80 |
+
with gr.Row():
|
| 81 |
+
guidance_scale = gr.Slider(
|
| 82 |
+
minimum=1.0,
|
| 83 |
+
maximum=20.0,
|
| 84 |
+
value=3.5,
|
| 85 |
+
step=0.5,
|
| 86 |
+
label="Guidance Scale"
|
| 87 |
+
)
|
| 88 |
+
num_inference_steps = gr.Slider(
|
| 89 |
+
minimum=10,
|
| 90 |
+
maximum=100,
|
| 91 |
+
value=50,
|
| 92 |
+
step=5,
|
| 93 |
+
label="Inference Steps"
|
| 94 |
+
)
|
| 95 |
+
|
| 96 |
+
seed = gr.Number(
|
| 97 |
+
label="Seed (-1 for random)",
|
| 98 |
+
value=-1,
|
| 99 |
+
precision=0
|
| 100 |
+
)
|
| 101 |
+
|
| 102 |
+
generate_btn = gr.Button("Generate Image", variant="primary", size="lg")
|
| 103 |
+
|
| 104 |
+
with gr.Column(scale=4):
|
| 105 |
+
output_image = gr.Image(label="Generated Image", type="pil")
|
| 106 |
+
used_seed = gr.Number(label="Seed Used", precision=0)
|
| 107 |
+
|
| 108 |
+
gr.Examples(
|
| 109 |
+
examples=[
|
| 110 |
+
["The Death of Ophelia by John Everett Millais, Pre-Raphaelite painting, Ophelia floating in a river surrounded by flowers, detailed natural elements, melancholic and tragic atmosphere"],
|
| 111 |
+
["A serene Japanese garden with cherry blossoms, koi pond, traditional wooden bridge, soft morning light, photorealistic"],
|
| 112 |
+
["Cyberpunk cityscape at night, neon lights, flying cars, rain-slicked streets, blade runner aesthetic, highly detailed"],
|
| 113 |
+
["Portrait of a majestic lion in golden hour light, detailed fur texture, intense gaze, African savanna background"],
|
| 114 |
+
["Abstract colorful explosion of paint in water, high speed photography, vibrant colors mixing, dramatic lighting"],
|
| 115 |
+
],
|
| 116 |
+
inputs=prompt,
|
| 117 |
+
label="Example Prompts"
|
| 118 |
+
)
|
| 119 |
+
|
| 120 |
+
generate_btn.click(
|
| 121 |
+
fn=generate_image,
|
| 122 |
+
inputs=[prompt, negative_prompt, width, height, guidance_scale, num_inference_steps, seed],
|
| 123 |
+
outputs=[output_image, used_seed]
|
| 124 |
+
)
|
| 125 |
+
|
| 126 |
+
demo.launch()
|