Spaces:
Runtime error
Runtime error
from basicsr.utils.registry import ARCH_REGISTRY | |
from torch import nn as nn | |
from torch.nn import functional as F | |
from torch.nn.utils import spectral_norm | |
class UNetDiscriminatorSN(nn.Module): | |
"""Defines a U-Net discriminator with spectral normalization (SN)""" | |
def __init__(self, num_in_ch, num_feat=64, skip_connection=True): | |
super(UNetDiscriminatorSN, self).__init__() | |
self.skip_connection = skip_connection | |
norm = spectral_norm | |
self.conv0 = nn.Conv2d(num_in_ch, num_feat, kernel_size=3, stride=1, padding=1) | |
self.conv1 = norm(nn.Conv2d(num_feat, num_feat * 2, 4, 2, 1, bias=False)) | |
self.conv2 = norm(nn.Conv2d(num_feat * 2, num_feat * 4, 4, 2, 1, bias=False)) | |
self.conv3 = norm(nn.Conv2d(num_feat * 4, num_feat * 8, 4, 2, 1, bias=False)) | |
# upsample | |
self.conv4 = norm(nn.Conv2d(num_feat * 8, num_feat * 4, 3, 1, 1, bias=False)) | |
self.conv5 = norm(nn.Conv2d(num_feat * 4, num_feat * 2, 3, 1, 1, bias=False)) | |
self.conv6 = norm(nn.Conv2d(num_feat * 2, num_feat, 3, 1, 1, bias=False)) | |
# extra | |
self.conv7 = norm(nn.Conv2d(num_feat, num_feat, 3, 1, 1, bias=False)) | |
self.conv8 = norm(nn.Conv2d(num_feat, num_feat, 3, 1, 1, bias=False)) | |
self.conv9 = nn.Conv2d(num_feat, 1, 3, 1, 1) | |
def forward(self, x): | |
x0 = F.leaky_relu(self.conv0(x), negative_slope=0.2, inplace=True) | |
x1 = F.leaky_relu(self.conv1(x0), negative_slope=0.2, inplace=True) | |
x2 = F.leaky_relu(self.conv2(x1), negative_slope=0.2, inplace=True) | |
x3 = F.leaky_relu(self.conv3(x2), negative_slope=0.2, inplace=True) | |
# upsample | |
x3 = F.interpolate(x3, scale_factor=2, mode='bilinear', align_corners=False) | |
x4 = F.leaky_relu(self.conv4(x3), negative_slope=0.2, inplace=True) | |
if self.skip_connection: | |
x4 = x4 + x2 | |
x4 = F.interpolate(x4, scale_factor=2, mode='bilinear', align_corners=False) | |
x5 = F.leaky_relu(self.conv5(x4), negative_slope=0.2, inplace=True) | |
if self.skip_connection: | |
x5 = x5 + x1 | |
x5 = F.interpolate(x5, scale_factor=2, mode='bilinear', align_corners=False) | |
x6 = F.leaky_relu(self.conv6(x5), negative_slope=0.2, inplace=True) | |
if self.skip_connection: | |
x6 = x6 + x0 | |
# extra | |
out = F.leaky_relu(self.conv7(x6), negative_slope=0.2, inplace=True) | |
out = F.leaky_relu(self.conv8(out), negative_slope=0.2, inplace=True) | |
out = self.conv9(out) | |
return out | |