akhaliq's picture
akhaliq HF staff
Update app.py
81e2b71 verified
raw
history blame
4.7 kB
import base64
import requests
from io import BytesIO
from PIL import Image
import gradio as gr
def encode_image(img):
"""
Encodes a PIL Image to a base64 string in PNG format.
"""
buffered = BytesIO()
img.save(buffered, format="PNG")
encoded_string = base64.b64encode(buffered.getvalue()).decode("utf-8")
return encoded_string
def get_api_response(api_key, user_message, user_image):
"""
Sends the user message and image to the Hyperbolic API and retrieves the response.
"""
if not api_key:
return {"error": "API key is required."}
if not user_message and not user_image:
return {"error": "Please provide a text message, an image, or both."}
try:
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {api_key}",
}
messages = []
if user_message:
messages.append({
"type": "text",
"text": user_message
})
if user_image:
# Open the uploaded image
img = Image.open(user_image)
base64_img = encode_image(img)
messages.append({
"type": "image_url",
"image_url": {"url": f"data:image/png;base64,{base64_img}"}
})
payload = {
"messages": [
{
"role": "user",
"content": messages,
}
],
"model": "Qwen/Qwen2-VL-72B-Instruct",
"max_tokens": 2048,
"temperature": 0.7,
"top_p": 0.9,
}
api_endpoint = "https://api.hyperbolic.xyz/v1/chat/completions"
response = requests.post(api_endpoint, headers=headers, json=payload)
# Check if the request was successful
if response.status_code == 200:
api_response = response.json()
# Extract the AI's reply (assuming the response structure)
ai_reply = api_response.get("choices", [{}])[0].get("message", {}).get("content", "No response content.")
return {"response": ai_reply}
else:
return {"error": f"API Error: {response.status_code} - {response.text}"}
except Exception as e:
return {"error": str(e)}
def chatbot_response(api_key, user_message, user_image, history):
"""
Handles the chatbot interaction by updating the conversation history.
"""
# Append the user's message to the history
if user_message or user_image:
history.append(("User", user_message, user_image))
# Get the API response
api_result = get_api_response(api_key, user_message, user_image)
if "error" in api_result:
ai_message = f"Error: {api_result['error']}"
else:
ai_message = api_result["response"]
# Append the AI's response to the history
history.append(("AI", ai_message, None))
return history, history
# Define the Gradio interface
with gr.Blocks() as demo:
gr.Markdown(
"""
# πŸ–ΌοΈ Image Description Chatbot with Hyperbolic API
Engage in a conversation with the AI by sending text messages and/or uploading images. Enter your Hyperbolic API key to get started.
"""
)
with gr.Row():
api_key_input = gr.Textbox(
label="πŸ”‘ Hyperbolic API Key",
type="password",
placeholder="Enter your API key here",
interactive=True
)
chatbot = gr.Chatbot(label="πŸ’¬ Chatbot") # `.style()` method removed
with gr.Row():
with gr.Column(scale=4):
user_text = gr.Textbox(
label="Your Message",
placeholder="Type your message here...",
lines=1
)
with gr.Column(scale=1):
user_image = gr.Image(
label="Upload Image",
type="file",
# Removed the 'tool' parameter
interactive=True
)
send_button = gr.Button("πŸ“€ Send")
# Hidden state to keep track of the conversation history
state = gr.State([])
send_button.click(
fn=chatbot_response,
inputs=[api_key_input, user_text, user_image, state],
outputs=[chatbot, state]
)
gr.Markdown(
"""
---
**Note:** Your API key is used only for this session and is not stored. Ensure you trust the environment in which you're running this application.
"""
)
# Launch the Gradio app
if __name__ == "__main__":
demo.launch()