Spaces:
Build error
Build error
import tensorflow as tf | |
import numpy as np | |
import miditoolkit | |
import modules | |
import pickle | |
import utils | |
import time | |
class PopMusicTransformer(object): | |
######################################## | |
# initialize | |
######################################## | |
def __init__(self, checkpoint, is_training=False): | |
# load dictionary | |
self.dictionary_path = '{}/dictionary.pkl'.format(checkpoint) | |
self.event2word, self.word2event = pickle.load(open(self.dictionary_path, 'rb')) | |
# model settings | |
self.x_len = 512 | |
self.mem_len = 512 | |
self.n_layer = 12 | |
self.d_embed = 512 | |
self.d_model = 512 | |
self.dropout = 0.1 | |
self.n_head = 8 | |
self.d_head = self.d_model // self.n_head | |
self.d_ff = 2048 | |
self.n_token = len(self.event2word) | |
self.learning_rate = 0.0002 | |
# load model | |
self.is_training = is_training | |
if self.is_training: | |
self.batch_size = 4 | |
else: | |
self.batch_size = 1 | |
self.checkpoint_path = '{}/model'.format(checkpoint) | |
self.load_model() | |
######################################## | |
# load model | |
######################################## | |
def load_model(self): | |
# placeholders | |
self.x = tf.compat.v1.placeholder(tf.int32, shape=[self.batch_size, None]) | |
self.y = tf.compat.v1.placeholder(tf.int32, shape=[self.batch_size, None]) | |
self.mems_i = [tf.compat.v1.placeholder(tf.float32, [self.mem_len, self.batch_size, self.d_model]) for _ in range(self.n_layer)] | |
# model | |
self.global_step = tf.compat.v1.train.get_or_create_global_step() | |
initializer = tf.compat.v1.initializers.random_normal(stddev=0.02, seed=None) | |
proj_initializer = tf.compat.v1.initializers.random_normal(stddev=0.01, seed=None) | |
with tf.compat.v1.variable_scope(tf.compat.v1.get_variable_scope()): | |
xx = tf.transpose(self.x, [1, 0]) | |
yy = tf.transpose(self.y, [1, 0]) | |
loss, self.logits, self.new_mem = modules.transformer( | |
dec_inp=xx, | |
target=yy, | |
mems=self.mems_i, | |
n_token=self.n_token, | |
n_layer=self.n_layer, | |
d_model=self.d_model, | |
d_embed=self.d_embed, | |
n_head=self.n_head, | |
d_head=self.d_head, | |
d_inner=self.d_ff, | |
dropout=self.dropout, | |
dropatt=self.dropout, | |
initializer=initializer, | |
proj_initializer=proj_initializer, | |
is_training=self.is_training, | |
mem_len=self.mem_len, | |
cutoffs=[], | |
div_val=-1, | |
tie_projs=[], | |
same_length=False, | |
clamp_len=-1, | |
input_perms=None, | |
target_perms=None, | |
head_target=None, | |
untie_r=False, | |
proj_same_dim=True) | |
self.avg_loss = tf.reduce_mean(loss) | |
# vars | |
all_vars = tf.compat.v1.trainable_variables() | |
grads = tf.gradients(self.avg_loss, all_vars) | |
grads_and_vars = list(zip(grads, all_vars)) | |
all_trainable_vars = tf.reduce_sum([tf.reduce_prod(v.shape) for v in tf.compat.v1.trainable_variables()]) | |
# optimizer | |
decay_lr = tf.compat.v1.train.cosine_decay( | |
self.learning_rate, | |
global_step=self.global_step, | |
decay_steps=400000, | |
alpha=0.004) | |
optimizer = tf.compat.v1.train.AdamOptimizer(learning_rate=decay_lr) | |
self.train_op = optimizer.apply_gradients(grads_and_vars, self.global_step) | |
# saver | |
self.saver = tf.compat.v1.train.Saver() | |
config = tf.compat.v1.ConfigProto(allow_soft_placement=True) | |
config.gpu_options.allow_growth = True | |
self.sess = tf.compat.v1.Session(config=config) | |
self.saver.restore(self.sess, self.checkpoint_path) | |
######################################## | |
# temperature sampling | |
######################################## | |
def temperature_sampling(self, logits, temperature, topk): | |
probs = np.exp(logits / temperature) / np.sum(np.exp(logits / temperature)) | |
if topk == 1: | |
prediction = np.argmax(probs) | |
else: | |
sorted_index = np.argsort(probs)[::-1] | |
candi_index = sorted_index[:topk] | |
candi_probs = [probs[i] for i in candi_index] | |
# normalize probs | |
candi_probs /= sum(candi_probs) | |
# choose by predicted probs | |
prediction = np.random.choice(candi_index, size=1, p=candi_probs)[0] | |
return prediction | |
######################################## | |
# extract events for prompt continuation | |
######################################## | |
def extract_events(self, input_path): | |
note_items, tempo_items = utils.read_items(input_path) | |
note_items = utils.quantize_items(note_items) | |
max_time = note_items[-1].end | |
if 'chord' in self.checkpoint_path: | |
chord_items = utils.extract_chords(note_items) | |
items = chord_items + tempo_items + note_items | |
else: | |
items = tempo_items + note_items | |
groups = utils.group_items(items, max_time) | |
events = utils.item2event(groups) | |
return events | |
######################################## | |
# generate | |
######################################## | |
def generate(self, n_target_bar, temperature, topk, output_path, prompt=None): | |
# if prompt, load it. Or, random start | |
if prompt: | |
events = self.extract_events(prompt) | |
words = [[self.event2word['{}_{}'.format(e.name, e.value)] for e in events]] | |
words[0].append(self.event2word['Bar_None']) | |
else: | |
words = [] | |
for _ in range(self.batch_size): | |
ws = [self.event2word['Bar_None']] | |
if 'chord' in self.checkpoint_path: | |
tempo_classes = [v for k, v in self.event2word.items() if 'Tempo Class' in k] | |
tempo_values = [v for k, v in self.event2word.items() if 'Tempo Value' in k] | |
chords = [v for k, v in self.event2word.items() if 'Chord' in k] | |
ws.append(self.event2word['Position_1/16']) | |
ws.append(np.random.choice(chords)) | |
ws.append(self.event2word['Position_1/16']) | |
ws.append(np.random.choice(tempo_classes)) | |
ws.append(np.random.choice(tempo_values)) | |
else: | |
tempo_classes = [v for k, v in self.event2word.items() if 'Tempo Class' in k] | |
tempo_values = [v for k, v in self.event2word.items() if 'Tempo Value' in k] | |
ws.append(self.event2word['Position_1/16']) | |
ws.append(np.random.choice(tempo_classes)) | |
ws.append(np.random.choice(tempo_values)) | |
words.append(ws) | |
# initialize mem | |
batch_m = [np.zeros((self.mem_len, self.batch_size, self.d_model), dtype=np.float32) for _ in range(self.n_layer)] | |
# generate | |
original_length = len(words[0]) | |
initial_flag = 1 | |
current_generated_bar = 0 | |
while current_generated_bar < n_target_bar: | |
# input | |
if initial_flag: | |
temp_x = np.zeros((self.batch_size, original_length)) | |
for b in range(self.batch_size): | |
for z, t in enumerate(words[b]): | |
temp_x[b][z] = t | |
initial_flag = 0 | |
else: | |
temp_x = np.zeros((self.batch_size, 1)) | |
for b in range(self.batch_size): | |
temp_x[b][0] = words[b][-1] | |
# prepare feed dict | |
feed_dict = {self.x: temp_x} | |
for m, m_np in zip(self.mems_i, batch_m): | |
feed_dict[m] = m_np | |
# model (prediction) | |
_logits, _new_mem = self.sess.run([self.logits, self.new_mem], feed_dict=feed_dict) | |
# sampling | |
_logit = _logits[-1, 0] | |
word = self.temperature_sampling( | |
logits=_logit, | |
temperature=temperature, | |
topk=topk) | |
words[0].append(word) | |
# if bar event (only work for batch_size=1) | |
if word == self.event2word['Bar_None']: | |
current_generated_bar += 1 | |
# re-new mem | |
batch_m = _new_mem | |
# write | |
if prompt: | |
utils.write_midi( | |
words=words[0][original_length:], | |
word2event=self.word2event, | |
output_path=output_path, | |
prompt_path=prompt) | |
else: | |
utils.write_midi( | |
words=words[0], | |
word2event=self.word2event, | |
output_path=output_path, | |
prompt_path=None) | |
######################################## | |
# prepare training data | |
######################################## | |
def prepare_data(self, midi_paths): | |
# extract events | |
all_events = [] | |
for path in midi_paths: | |
events = self.extract_events(path) | |
all_events.append(events) | |
# event to word | |
all_words = [] | |
for events in all_events: | |
words = [] | |
for event in events: | |
e = '{}_{}'.format(event.name, event.value) | |
if e in self.event2word: | |
words.append(self.event2word[e]) | |
else: | |
# OOV | |
if event.name == 'Note Velocity': | |
# replace with max velocity based on our training data | |
words.append(self.event2word['Note Velocity_21']) | |
else: | |
# something is wrong | |
# you should handle it for your own purpose | |
print('something is wrong! {}'.format(e)) | |
all_words.append(words) | |
# to training data | |
self.group_size = 5 | |
segments = [] | |
for words in all_words: | |
pairs = [] | |
for i in range(0, len(words)-self.x_len-1, self.x_len): | |
x = words[i:i+self.x_len] | |
y = words[i+1:i+self.x_len+1] | |
pairs.append([x, y]) | |
pairs = np.array(pairs) | |
# abandon the last | |
for i in np.arange(0, len(pairs)-self.group_size, self.group_size*2): | |
data = pairs[i:i+self.group_size] | |
if len(data) == self.group_size: | |
segments.append(data) | |
segments = np.array(segments) | |
return segments | |
######################################## | |
# finetune | |
######################################## | |
def finetune(self, training_data, output_checkpoint_folder): | |
# shuffle | |
index = np.arange(len(training_data)) | |
np.random.shuffle(index) | |
training_data = training_data[index] | |
num_batches = len(training_data) // self.batch_size | |
st = time.time() | |
for e in range(200): | |
total_loss = [] | |
for i in range(num_batches): | |
segments = training_data[self.batch_size*i:self.batch_size*(i+1)] | |
batch_m = [np.zeros((self.mem_len, self.batch_size, self.d_model), dtype=np.float32) for _ in range(self.n_layer)] | |
for j in range(self.group_size): | |
batch_x = segments[:, j, 0, :] | |
batch_y = segments[:, j, 1, :] | |
# prepare feed dict | |
feed_dict = {self.x: batch_x, self.y: batch_y} | |
for m, m_np in zip(self.mems_i, batch_m): | |
feed_dict[m] = m_np | |
# run | |
_, gs_, loss_, new_mem_ = self.sess.run([self.train_op, self.global_step, self.avg_loss, self.new_mem], feed_dict=feed_dict) | |
batch_m = new_mem_ | |
total_loss.append(loss_) | |
print('>>> Epoch: {}, Step: {}, Loss: {:.5f}, Time: {:.2f}'.format(e, gs_, loss_, time.time()-st)) | |
self.saver.save(self.sess, '{}/model-{:03d}-{:.3f}'.format(output_checkpoint_folder, e, np.mean(total_loss))) | |
# stop | |
if np.mean(total_loss) <= 0.1: | |
break | |
######################################## | |
# close | |
######################################## | |
def close(self): | |
self.sess.close() | |