Spaces:
Runtime error
Runtime error
import logging | |
import os | |
import time | |
from typing import List, NoReturn | |
import librosa | |
import numpy as np | |
import pysepm | |
import pytorch_lightning as pl | |
import torch.nn as nn | |
from pesq import pesq | |
from pytorch_lightning.utilities import rank_zero_only | |
from bytesep.callbacks.base_callbacks import SaveCheckpointsCallback | |
from bytesep.inference import Separator | |
from bytesep.utils import StatisticsContainer, read_yaml | |
def get_voicebank_demand_callbacks( | |
config_yaml: str, | |
workspace: str, | |
checkpoints_dir: str, | |
statistics_path: str, | |
logger: pl.loggers.TensorBoardLogger, | |
model: nn.Module, | |
evaluate_device: str, | |
) -> List[pl.Callback]: | |
"""Get Voicebank-Demand callbacks of a config yaml. | |
Args: | |
config_yaml: str | |
workspace: str | |
checkpoints_dir: str, directory to save checkpoints | |
statistics_dir: str, directory to save statistics | |
logger: pl.loggers.TensorBoardLogger | |
model: nn.Module | |
evaluate_device: str | |
Return: | |
callbacks: List[pl.Callback] | |
""" | |
configs = read_yaml(config_yaml) | |
task_name = configs['task_name'] | |
target_source_types = configs['train']['target_source_types'] | |
input_channels = configs['train']['channels'] | |
evaluation_audios_dir = os.path.join(workspace, "evaluation_audios", task_name) | |
sample_rate = configs['train']['sample_rate'] | |
evaluate_step_frequency = configs['train']['evaluate_step_frequency'] | |
save_step_frequency = configs['train']['save_step_frequency'] | |
test_batch_size = configs['evaluate']['batch_size'] | |
test_segment_seconds = configs['evaluate']['segment_seconds'] | |
test_segment_samples = int(test_segment_seconds * sample_rate) | |
assert len(target_source_types) == 1 | |
target_source_type = target_source_types[0] | |
assert target_source_type == 'speech' | |
# save checkpoint callback | |
save_checkpoints_callback = SaveCheckpointsCallback( | |
model=model, | |
checkpoints_dir=checkpoints_dir, | |
save_step_frequency=save_step_frequency, | |
) | |
# statistics container | |
statistics_container = StatisticsContainer(statistics_path) | |
# evaluation callback | |
evaluate_test_callback = EvaluationCallback( | |
model=model, | |
input_channels=input_channels, | |
sample_rate=sample_rate, | |
evaluation_audios_dir=evaluation_audios_dir, | |
segment_samples=test_segment_samples, | |
batch_size=test_batch_size, | |
device=evaluate_device, | |
evaluate_step_frequency=evaluate_step_frequency, | |
logger=logger, | |
statistics_container=statistics_container, | |
) | |
callbacks = [save_checkpoints_callback, evaluate_test_callback] | |
return callbacks | |
class EvaluationCallback(pl.Callback): | |
def __init__( | |
self, | |
model: nn.Module, | |
input_channels: int, | |
evaluation_audios_dir, | |
sample_rate: int, | |
segment_samples: int, | |
batch_size: int, | |
device: str, | |
evaluate_step_frequency: int, | |
logger: pl.loggers.TensorBoardLogger, | |
statistics_container: StatisticsContainer, | |
): | |
r"""Callback to evaluate every #save_step_frequency steps. | |
Args: | |
model: nn.Module | |
input_channels: int | |
evaluation_audios_dir: str, directory containing audios for evaluation | |
sample_rate: int | |
segment_samples: int, length of segments to be input to a model, e.g., 44100*30 | |
batch_size, int, e.g., 12 | |
device: str, e.g., 'cuda' | |
evaluate_step_frequency: int, evaluate every #save_step_frequency steps | |
logger: pl.loggers.TensorBoardLogger | |
statistics_container: StatisticsContainer | |
""" | |
self.model = model | |
self.mono = True | |
self.sample_rate = sample_rate | |
self.segment_samples = segment_samples | |
self.evaluate_step_frequency = evaluate_step_frequency | |
self.logger = logger | |
self.statistics_container = statistics_container | |
self.clean_dir = os.path.join(evaluation_audios_dir, "clean_testset_wav") | |
self.noisy_dir = os.path.join(evaluation_audios_dir, "noisy_testset_wav") | |
self.EVALUATION_SAMPLE_RATE = 16000 # Evaluation sample rate of the | |
# Voicebank-Demand task. | |
# separator | |
self.separator = Separator(model, self.segment_samples, batch_size, device) | |
def on_batch_end(self, trainer: pl.Trainer, _) -> NoReturn: | |
r"""Evaluate losses on a few mini-batches. Losses are only used for | |
observing training, and are not final F1 metrics. | |
""" | |
global_step = trainer.global_step | |
if global_step % self.evaluate_step_frequency == 0: | |
audio_names = sorted( | |
[ | |
audio_name | |
for audio_name in sorted(os.listdir(self.clean_dir)) | |
if audio_name.endswith('.wav') | |
] | |
) | |
error_str = "Directory {} does not contain audios for evaluation!".format( | |
self.clean_dir | |
) | |
assert len(audio_names) > 0, error_str | |
pesqs, csigs, cbaks, covls, ssnrs = [], [], [], [], [] | |
logging.info("--- Step {} ---".format(global_step)) | |
logging.info("Total {} pieces for evaluation:".format(len(audio_names))) | |
eval_time = time.time() | |
for n, audio_name in enumerate(audio_names): | |
# Load audio. | |
clean_path = os.path.join(self.clean_dir, audio_name) | |
mixture_path = os.path.join(self.noisy_dir, audio_name) | |
mixture, _ = librosa.core.load( | |
mixture_path, sr=self.sample_rate, mono=self.mono | |
) | |
if mixture.ndim == 1: | |
mixture = mixture[None, :] | |
# (channels_num, audio_length) | |
# Separate. | |
input_dict = {'waveform': mixture} | |
sep_wav = self.separator.separate(input_dict) | |
# (channels_num, audio_length) | |
# Target | |
clean, _ = librosa.core.load( | |
clean_path, sr=self.EVALUATION_SAMPLE_RATE, mono=self.mono | |
) | |
# to mono | |
sep_wav = np.squeeze(sep_wav) | |
# Resample for evaluation. | |
sep_wav = librosa.resample( | |
sep_wav, | |
orig_sr=self.sample_rate, | |
target_sr=self.EVALUATION_SAMPLE_RATE, | |
) | |
sep_wav = librosa.util.fix_length(sep_wav, size=len(clean), axis=0) | |
# (channels, audio_length) | |
# Evaluate metrics | |
pesq_ = pesq(self.EVALUATION_SAMPLE_RATE, clean, sep_wav, 'wb') | |
(csig, cbak, covl) = pysepm.composite( | |
clean, sep_wav, self.EVALUATION_SAMPLE_RATE | |
) | |
ssnr = pysepm.SNRseg(clean, sep_wav, self.EVALUATION_SAMPLE_RATE) | |
pesqs.append(pesq_) | |
csigs.append(csig) | |
cbaks.append(cbak) | |
covls.append(covl) | |
ssnrs.append(ssnr) | |
print( | |
'{}, {}, PESQ: {:.3f}, CSIG: {:.3f}, CBAK: {:.3f}, COVL: {:.3f}, SSNR: {:.3f}'.format( | |
n, audio_name, pesq_, csig, cbak, covl, ssnr | |
) | |
) | |
logging.info("-----------------------------") | |
logging.info('Avg PESQ: {:.3f}'.format(np.mean(pesqs))) | |
logging.info('Avg CSIG: {:.3f}'.format(np.mean(csigs))) | |
logging.info('Avg CBAK: {:.3f}'.format(np.mean(cbaks))) | |
logging.info('Avg COVL: {:.3f}'.format(np.mean(covls))) | |
logging.info('Avg SSNR: {:.3f}'.format(np.mean(ssnrs))) | |
logging.info("Evlauation time: {:.3f}".format(time.time() - eval_time)) | |
statistics = {"pesq": np.mean(pesqs)} | |
self.statistics_container.append(global_step, statistics, 'test') | |
self.statistics_container.dump() | |