akhaliq3
spaces demo
5019931
raw
history blame
17.2 kB
import logging
import os
import time
from typing import Dict, List, NoReturn
import librosa
import musdb
import museval
import numpy as np
import pytorch_lightning as pl
import torch.nn as nn
from pytorch_lightning.utilities import rank_zero_only
from bytesep.callbacks.base_callbacks import SaveCheckpointsCallback
from bytesep.dataset_creation.pack_audios_to_hdf5s.musdb18 import preprocess_audio
from bytesep.inference import Separator
from bytesep.utils import StatisticsContainer, read_yaml
def get_musdb18_callbacks(
config_yaml: str,
workspace: str,
checkpoints_dir: str,
statistics_path: str,
logger: pl.loggers.TensorBoardLogger,
model: nn.Module,
evaluate_device: str,
) -> List[pl.Callback]:
r"""Get MUSDB18 callbacks of a config yaml.
Args:
config_yaml: str
workspace: str
checkpoints_dir: str, directory to save checkpoints
statistics_dir: str, directory to save statistics
logger: pl.loggers.TensorBoardLogger
model: nn.Module
evaluate_device: str
Return:
callbacks: List[pl.Callback]
"""
configs = read_yaml(config_yaml)
task_name = configs['task_name']
evaluation_callback = configs['train']['evaluation_callback']
target_source_types = configs['train']['target_source_types']
input_channels = configs['train']['channels']
evaluation_audios_dir = os.path.join(workspace, "evaluation_audios", task_name)
test_segment_seconds = configs['evaluate']['segment_seconds']
sample_rate = configs['train']['sample_rate']
test_segment_samples = int(test_segment_seconds * sample_rate)
test_batch_size = configs['evaluate']['batch_size']
evaluate_step_frequency = configs['train']['evaluate_step_frequency']
save_step_frequency = configs['train']['save_step_frequency']
# save checkpoint callback
save_checkpoints_callback = SaveCheckpointsCallback(
model=model,
checkpoints_dir=checkpoints_dir,
save_step_frequency=save_step_frequency,
)
# evaluation callback
EvaluationCallback = _get_evaluation_callback_class(evaluation_callback)
# statistics container
statistics_container = StatisticsContainer(statistics_path)
# evaluation callback
evaluate_train_callback = EvaluationCallback(
dataset_dir=evaluation_audios_dir,
model=model,
target_source_types=target_source_types,
input_channels=input_channels,
sample_rate=sample_rate,
split='train',
segment_samples=test_segment_samples,
batch_size=test_batch_size,
device=evaluate_device,
evaluate_step_frequency=evaluate_step_frequency,
logger=logger,
statistics_container=statistics_container,
)
evaluate_test_callback = EvaluationCallback(
dataset_dir=evaluation_audios_dir,
model=model,
target_source_types=target_source_types,
input_channels=input_channels,
sample_rate=sample_rate,
split='test',
segment_samples=test_segment_samples,
batch_size=test_batch_size,
device=evaluate_device,
evaluate_step_frequency=evaluate_step_frequency,
logger=logger,
statistics_container=statistics_container,
)
# callbacks = [save_checkpoints_callback, evaluate_train_callback, evaluate_test_callback]
callbacks = [save_checkpoints_callback, evaluate_test_callback]
return callbacks
def _get_evaluation_callback_class(evaluation_callback) -> pl.Callback:
r"""Get evaluation callback class."""
if evaluation_callback == "Musdb18EvaluationCallback":
return Musdb18EvaluationCallback
if evaluation_callback == 'Musdb18ConditionalEvaluationCallback':
return Musdb18ConditionalEvaluationCallback
else:
raise NotImplementedError
class Musdb18EvaluationCallback(pl.Callback):
def __init__(
self,
dataset_dir: str,
model: nn.Module,
target_source_types: str,
input_channels: int,
split: str,
sample_rate: int,
segment_samples: int,
batch_size: int,
device: str,
evaluate_step_frequency: int,
logger: pl.loggers.TensorBoardLogger,
statistics_container: StatisticsContainer,
):
r"""Callback to evaluate every #save_step_frequency steps.
Args:
dataset_dir: str
model: nn.Module
target_source_types: List[str], e.g., ['vocals', 'bass', ...]
input_channels: int
split: 'train' | 'test'
sample_rate: int
segment_samples: int, length of segments to be input to a model, e.g., 44100*30
batch_size, int, e.g., 12
device: str, e.g., 'cuda'
evaluate_step_frequency: int, evaluate every #save_step_frequency steps
logger: object
statistics_container: StatisticsContainer
"""
self.model = model
self.target_source_types = target_source_types
self.input_channels = input_channels
self.sample_rate = sample_rate
self.split = split
self.segment_samples = segment_samples
self.evaluate_step_frequency = evaluate_step_frequency
self.logger = logger
self.statistics_container = statistics_container
self.mono = input_channels == 1
self.resample_type = "kaiser_fast"
self.mus = musdb.DB(root=dataset_dir, subsets=[split])
error_msg = "The directory {} is empty!".format(dataset_dir)
assert len(self.mus) > 0, error_msg
# separator
self.separator = Separator(model, self.segment_samples, batch_size, device)
@rank_zero_only
def on_batch_end(self, trainer: pl.Trainer, _) -> NoReturn:
r"""Evaluate separation SDRs of audio recordings."""
global_step = trainer.global_step
if global_step % self.evaluate_step_frequency == 0:
sdr_dict = {}
logging.info("--- Step {} ---".format(global_step))
logging.info("Total {} pieces for evaluation:".format(len(self.mus.tracks)))
eval_time = time.time()
for track in self.mus.tracks:
audio_name = track.name
# Get waveform of mixture.
mixture = track.audio.T
# (channels_num, audio_samples)
mixture = preprocess_audio(
audio=mixture,
mono=self.mono,
origin_sr=track.rate,
sr=self.sample_rate,
resample_type=self.resample_type,
)
# (channels_num, audio_samples)
target_dict = {}
sdr_dict[audio_name] = {}
# Get waveform of all target source types.
for j, source_type in enumerate(self.target_source_types):
# E.g., ['vocals', 'bass', ...]
audio = track.targets[source_type].audio.T
audio = preprocess_audio(
audio=audio,
mono=self.mono,
origin_sr=track.rate,
sr=self.sample_rate,
resample_type=self.resample_type,
)
# (channels_num, audio_samples)
target_dict[source_type] = audio
# (channels_num, audio_samples)
# Separate.
input_dict = {'waveform': mixture}
sep_wavs = self.separator.separate(input_dict)
# sep_wavs: (target_sources_num * channels_num, audio_samples)
# Post process separation results.
sep_wavs = preprocess_audio(
audio=sep_wavs,
mono=self.mono,
origin_sr=self.sample_rate,
sr=track.rate,
resample_type=self.resample_type,
)
# sep_wavs: (target_sources_num * channels_num, audio_samples)
sep_wavs = librosa.util.fix_length(
sep_wavs, size=mixture.shape[1], axis=1
)
# sep_wavs: (target_sources_num * channels_num, audio_samples)
sep_wav_dict = get_separated_wavs_from_simo_output(
sep_wavs, self.input_channels, self.target_source_types
)
# output_dict: dict, e.g., {
# 'vocals': (channels_num, audio_samples),
# 'bass': (channels_num, audio_samples),
# ...,
# }
# Evaluate for all target source types.
for source_type in self.target_source_types:
# E.g., ['vocals', 'bass', ...]
# Calculate SDR using museval, input shape should be: (nsrc, nsampl, nchan).
(sdrs, _, _, _) = museval.evaluate(
[target_dict[source_type].T], [sep_wav_dict[source_type].T]
)
sdr = np.nanmedian(sdrs)
sdr_dict[audio_name][source_type] = sdr
logging.info(
"{}, {}, sdr: {:.3f}".format(audio_name, source_type, sdr)
)
logging.info("-----------------------------")
median_sdr_dict = {}
# Calculate median SDRs of all songs.
for source_type in self.target_source_types:
# E.g., ['vocals', 'bass', ...]
median_sdr = np.median(
[
sdr_dict[audio_name][source_type]
for audio_name in sdr_dict.keys()
]
)
median_sdr_dict[source_type] = median_sdr
logging.info(
"Step: {}, {}, Median SDR: {:.3f}".format(
global_step, source_type, median_sdr
)
)
logging.info("Evlauation time: {:.3f}".format(time.time() - eval_time))
statistics = {"sdr_dict": sdr_dict, "median_sdr_dict": median_sdr_dict}
self.statistics_container.append(global_step, statistics, self.split)
self.statistics_container.dump()
def get_separated_wavs_from_simo_output(x, input_channels, target_source_types) -> Dict:
r"""Get separated waveforms of target sources from a single input multiple
output (SIMO) system.
Args:
x: (target_sources_num * channels_num, audio_samples)
input_channels: int
target_source_types: List[str], e.g., ['vocals', 'bass', ...]
Returns:
output_dict: dict, e.g., {
'vocals': (channels_num, audio_samples),
'bass': (channels_num, audio_samples),
...,
}
"""
output_dict = {}
for j, source_type in enumerate(target_source_types):
output_dict[source_type] = x[j * input_channels : (j + 1) * input_channels]
return output_dict
class Musdb18ConditionalEvaluationCallback(pl.Callback):
def __init__(
self,
dataset_dir: str,
model: nn.Module,
target_source_types: str,
input_channels: int,
split: str,
sample_rate: int,
segment_samples: int,
batch_size: int,
device: str,
evaluate_step_frequency: int,
logger: pl.loggers.TensorBoardLogger,
statistics_container: StatisticsContainer,
):
r"""Callback to evaluate every #save_step_frequency steps.
Args:
dataset_dir: str
model: nn.Module
target_source_types: List[str], e.g., ['vocals', 'bass', ...]
input_channels: int
split: 'train' | 'test'
sample_rate: int
segment_samples: int, length of segments to be input to a model, e.g., 44100*30
batch_size, int, e.g., 12
device: str, e.g., 'cuda'
evaluate_step_frequency: int, evaluate every #save_step_frequency steps
logger: object
statistics_container: StatisticsContainer
"""
self.model = model
self.target_source_types = target_source_types
self.input_channels = input_channels
self.sample_rate = sample_rate
self.split = split
self.segment_samples = segment_samples
self.evaluate_step_frequency = evaluate_step_frequency
self.logger = logger
self.statistics_container = statistics_container
self.mono = input_channels == 1
self.resample_type = "kaiser_fast"
self.mus = musdb.DB(root=dataset_dir, subsets=[split])
error_msg = "The directory {} is empty!".format(dataset_dir)
assert len(self.mus) > 0, error_msg
# separator
self.separator = Separator(model, self.segment_samples, batch_size, device)
@rank_zero_only
def on_batch_end(self, trainer: pl.Trainer, _) -> NoReturn:
r"""Evaluate separation SDRs of audio recordings."""
global_step = trainer.global_step
if global_step % self.evaluate_step_frequency == 0:
sdr_dict = {}
logging.info("--- Step {} ---".format(global_step))
logging.info("Total {} pieces for evaluation:".format(len(self.mus.tracks)))
eval_time = time.time()
for track in self.mus.tracks:
audio_name = track.name
# Get waveform of mixture.
mixture = track.audio.T
# (channels_num, audio_samples)
mixture = preprocess_audio(
audio=mixture,
mono=self.mono,
origin_sr=track.rate,
sr=self.sample_rate,
resample_type=self.resample_type,
)
# (channels_num, audio_samples)
target_dict = {}
sdr_dict[audio_name] = {}
# Get waveform of all target source types.
for j, source_type in enumerate(self.target_source_types):
# E.g., ['vocals', 'bass', ...]
audio = track.targets[source_type].audio.T
audio = preprocess_audio(
audio=audio,
mono=self.mono,
origin_sr=track.rate,
sr=self.sample_rate,
resample_type=self.resample_type,
)
# (channels_num, audio_samples)
target_dict[source_type] = audio
# (channels_num, audio_samples)
condition = np.zeros(len(self.target_source_types))
condition[j] = 1
input_dict = {'waveform': mixture, 'condition': condition}
sep_wav = self.separator.separate(input_dict)
# sep_wav: (channels_num, audio_samples)
sep_wav = preprocess_audio(
audio=sep_wav,
mono=self.mono,
origin_sr=self.sample_rate,
sr=track.rate,
resample_type=self.resample_type,
)
# sep_wav: (channels_num, audio_samples)
sep_wav = librosa.util.fix_length(
sep_wav, size=mixture.shape[1], axis=1
)
# sep_wav: (target_sources_num * channels_num, audio_samples)
# Calculate SDR using museval, input shape should be: (nsrc, nsampl, nchan)
(sdrs, _, _, _) = museval.evaluate(
[target_dict[source_type].T], [sep_wav.T]
)
sdr = np.nanmedian(sdrs)
sdr_dict[audio_name][source_type] = sdr
logging.info(
"{}, {}, sdr: {:.3f}".format(audio_name, source_type, sdr)
)
logging.info("-----------------------------")
median_sdr_dict = {}
# Calculate median SDRs of all songs.
for source_type in self.target_source_types:
median_sdr = np.median(
[
sdr_dict[audio_name][source_type]
for audio_name in sdr_dict.keys()
]
)
median_sdr_dict[source_type] = median_sdr
logging.info(
"Step: {}, {}, Median SDR: {:.3f}".format(
global_step, source_type, median_sdr
)
)
logging.info("Evlauation time: {:.3f}".format(time.time() - eval_time))
statistics = {"sdr_dict": sdr_dict, "median_sdr_dict": median_sdr_dict}
self.statistics_container.append(global_step, statistics, self.split)
self.statistics_container.dump()